Numerical investigation of nanofluid mixed convection heat transfer with variable properties within a shallow lid driven cavity

Document Type : Mechanics article

Authors

Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

Abstract

This paper focuses on the study of Laminar mix convection heat transfer of water-AL2O3 and water-CuO nanofluids whit temperature and nanoparticles concentration dependent thermophyscical properties in a rectangular shallow cavity was investigated numerically. Upper movable lid of the cavity was at a lower temperature compared to the bottom wall. Simulations were performed for Grashof numbers of 104 for Richardson numbers from 0.1 to 4.5, and nanoparticle volume fraction of 0.01-0.04. The two-dimensional governing equations were discretized using a finite volume method and SIMPLE algorithm. The model prediction for very low solid volume fraction were found to be in good agreement whit earlier numerical studies for a base fluid. It is shown that under a wide range of volume fraction of nanoparticles and different Richardson number, the enhancement of heat transfer will be evaluated. The Reynolds number varies due to variation of the Richardson number. Heat transfer was elevated by increasing the concentration of nanoparticles additionally. In this paper investigated the role of nanofluid variable properties in differentially heated enclosures and found that the prediction of heat.

Keywords

Main Subjects


 
[1]   Choi S. U. S., Eastman J. A., “Enhancing thermal conductivity of fluids with nanoparticles”, International Mechanical Engineering Congress and Exhibition, San Francisco, Calif, USA, 1995.
[2]  Das S.K., Putra N., Thiesen P., RoetzdW.,”Temperature dependence of thermal conductivity enhancement for nanofluids”, Journal of Heat Transfer , Vol. 125, No. 4, 2003, pp. 567-574.
[3]  Mansour,M.A., Mohamed, R.A., Abd-Elaziz, M.M., Ahmed, S.E., 2010. “Numerical simulation of mixed convection flows in a square lid-driven cavity partially heated from below using nanofluid”. International Communications in Heat and Mass Transfer 37(10), December, pp. 1504–1512.
[4]  Ghasemi,B., Aminossadati, S.M., 2010. “Mixed convection in a lid-driven triangular enclosure filled with nanofluids”. International Communications in Heat and Mass Transfer 37 (8), October, pp. 1142–1148.
[5]   heikhzadeh, G.A., EbrahimQomi, M., Hajialigol, N., Fattahi, A.,“Numerical study of mixed convection flows in a lid-driven enclosure filledWithnanofluid using variable properties”. International Results in Physics 2 (2012) 5–13.
[6] Khanafer.K, and Vafai. K., "A critical synthesis of thermophysical characteristics of nanofluids", International Journal of Heat and Mass Transfer, (2011), 54, 4410-4428.
[7] Ho. C, J. Liu, W. K., Chang. Y, and Lin, C. C., "Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study", International Journal of Thermal Sciences, (2010), 49, 1345-1353.
[8] Chamkhaa, Ali J., Abu-Nada, Eiyad., “Mixed convection flow in single- and double-lid driven square cavities filled with water–Al2O3 nanofluid: Effect of viscosity models”. European Journal of Mechanics B/Fluids (2012).
[9] AbbasianArani, A.A., MazroueiSebdani, S., Mahmoodi b, M.,Ardeshiri, A., Aliakbari. M., “Numerical study of mixed convection flow in a lid-driven cavity with sinusoidal heating on sidewallsusingnanofluid” Superlattices and Microstructures 51 (2012) 893–911.
[10] Wang. x, D.g.Li, “Heat Transfer Enhancement of CuO- Water Nanofluids Considering Brownian Motion of Nanoparticles in a Singular Cavity”, ThermSci, (2012), 9, 1223-1235.
[11] Lotfi. R, Saboohi, Y , and Rashidi, A. M., "Numerical study of forced convective heat transfer of Nanofluids: Comparison of different approaches", International Communications in Heat and Mass Transfer, (2010), 73, 3774-78.
[12] Garoosi.F, “Numerical simulation of mixed convection of the nanofluid in heat exchangers using a Buongiorno model”, Powder Technology, (2015),  269, 296-311.
[13] Kefayati.GH R, “FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field”, International Journal of Thermal Sciences, (2015), 95, 29-46.
[14] عبدالحسین فریدون، علی اکبر عباسیان آرانی، محمد همت اسفه و آرین زارع قادی، ارزیابی جریان جابه جایی طبیعی حول استوانه داغ قرارگرفته در محفظه مربعی پر شده از نانوسیال با تغییر در شعاع و موقعیت استوانه، مجله مدل سازی در مهندسی، سال یازدهم، شماره 33 ، تابستان  1392
[15] علی اکبر عباسیان آرانی، علیرضا آقایی، حمیدرضا احترام، بررسی عددی تاثیر حرکت براونی در جابه جایی توام نانوسیال در محفظه با یک منبع مربعی گرم مرکزی، مجله مدل سازی در مهندسی، سال یازدهم، شماره 34 ، پاییز 1392
[16] قنبرعلی شیخ زاده ، سید پیام غفاری، مدل سازی عددی اثر انتقال نانو ذرات در جریان جابه جایی ترکیبی نانوسیال با خواص متغیر در محفظه مربعی با درگاه ورود و خروج جریان، مجله مدل سازی در مهندسی، سال دوازدهم، شماره 83 ، پاییز 38
[17] Fotukian.S.M, M. Nasr Esfahany, Experimental investigation of turbulent convective heat transfer of dilute c-Al2O3-water nanofluid inside a circular tube, International Journal of Heat and Fluid Flow, (2010), 31,606-612.
[18] Dastmalchi.M, “Numerical study of nanoparticles transport in natural convection ofWater-Al2O3nanofluid with variable properties in a square enclosure”,Department of Mechanical Engineering, (2011), 86, 312-402.
[19] Corcione.M, “Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids”,  Energy Conversion and Management, (2011), 52, 789-793.