Simulation of Membrane process to removal of volatile organic compounds from wastewater using Computational Fluid Dynamic (CFD)

Document Type : Chemistry Article

Authors

Department of Chemical Engineering, Mahshahr branch, Islamic Azad University, Mahshahr, Iran

Abstract

One of the most important sources of volatile organic compounds is chemical solvent manufacturing. In addition to causing a lot of pollution to the environment, these organic materials are also economically harmful due to waste. For this reason, removing organic matter from industrial water or wastewater, as well as retrieving them, is an important issue. In this paper, the simulation of the process of separating volatile organic material from water by using nano-fiber membrane has been investigated. COMSOL Multiphysics software was used for numerical simulation of the system. By simulating in different conditions, it is possible to evaluate the performance of a membrane process in the removal of various pollutants. Finally, in order to evaluate the accuracy of the results of the simulation, the results of laboratory experiments by Feng et al. Were used. The simulation results show that after five hours, the concentration of chloroform at 60 ° C was reduced from 1157 to 400 ppm. At 23 ° C, the amount of organic matter lost from 1347 to 1080 ppm. The difference in gradient variations in these two temperatures is mainly due to the change in the Henry coefficient in the VLE, which increases with increasing temperature and improves the chlorophyll penetration inside the membrane and consequently improves its removal rate. Comparing the variations in the concentration of feed inside the tank at these two temperatures indicates that the simulations are very suitable for laboratory simulations with a relative difference of 11%.

Keywords

Main Subjects


[1] C. Feng, K.C. Khulbe, & S. Tabe, "Volatile organic compound removal by membrane gas stripping using
electro-spun nanofiber membrane", Desalination, Vol. 287, 2012, pp. 98–102.
[2] H. Valdés, J. Romero, J. Sanchez, S. Bocquet, G.M. Rios, and F. Valenzuela, "Characterization of chemical
kinetics in membrane-based liquid–liquid extraction of molybdenum (VI) from aqueous solutions",
Chemical Engineering Journal, Vol. 151, Nos. 1–3, 2009, 333–341.
[3] M. Ghadiri, V. Abkhiz, M. Parvini, and A. Marjani, "Simulation of Membrane Distillation for Purifying Water
Containing 1, 1, 1‐Trichloroethane", Chemical Engineering & Technology, Vol. 37, No. 3, 2014, pp.
543–550.
[4] D. Liu, G. Liu, L. Meng, Z. Dong, K. Huang, and W. Jin, "Hollow fiber modules with ceramic-supported
PDMS composite membranes for pervaporation recovery of bio-butanol", Separation and Purification
Technology, Vol. 146, 2015, pp. 24–32.
[5] CFDOnline, [Online], Available:http://www.cfdonline.com/Wiki/Turbulence- modeling, [Accessed 5 12
2015].
[6] R. Sander, "Compilation of Henry's law constants (version 4.0) for water as solvent." Atmospheric Chemistry
& Physics, Vol. 15, 2015, pp. 4399–4981.
[7] ن. یعقوبی، "سینتیک و پدیده های انتقال در جفت شدن اکسایشی متان: مدلسازی CFDدرمقیاس دانه ای" مجله مدلسازی درمهندسی،دانشگاه سمنان، دوره 12،شماره 39، 1393،صفحه 123-141.
[8] CFD Module User’s Guide, Comsol Multiphysics v5.3, 2017.
8[ م. ضیائی راد، "بررسی عددی تأثیر هندسه دانه های روی سطح بر جریان آشفته و انتقال حرارت در یک کانال مستطیلی"، مجله مدلسازی در مهندسی، دانشگاه سمنان، دوره 9،شماره 27، 1390 ، صفحه 37-48 ،
[10] Meshing, in Reference Manual, Comsol Multiphysics v5.3, 2017.
[11] م. علیگودرز، "مدلسازی عددی محفظه احتراق توربین SGT600 و تحلیل میدان جریان در شرایط کارکرد واقعی"، مجله مدلسازی در مهندسی، دانشگاه سمنان، دوره 10 ، شماره 31، 1391، صفحه 25-35.
[12] R.B. Bird, Transport phenomena, Applied Mechanics Reviews, 55(1), R1-R4, 2002.