Development of Multi-similarity index Clustering algorithm in Mathematical Modelling of Mines

Document Type : Mining Engineering Article

Author

Mining engineering- High education center of shahid bakeri- Urmia university

Abstract

Generating a production schedule that will provide optimal operating strategies without all technical and operational constraints is not practical. Creating such models with considering NPV as objective function result to oversize mathematical problems which needs more CPU time. This paper developed a multi-index clustering algorithm to reduce the size of the large-scale mathematical problems by reducing the number of decisions variables. By the way the presented algorithm remove dependency to weight importance coefficients and marks the planning with minimum error and significant reduction in the size of the model and solving time. In application and comparison of the presented clustering technique, 2478 extraction block aggregated in first step in 10 clusters, and in second step in 40 and finally in 109 clusters. By using CPLEX and MATLAB the MILP models of clusters and extraction block created to evaluate the clustering technique. The results show that CPU time has 86% reduction whereas the NPV only show 1.8% difference between clusters and block models.

Keywords

Main Subjects


[1] F. Nezhadshahmohammad, H. Aghababaei and Y. Pourrahimian, "Block cave extraction sequence and draw
rate optimization using mathematical programming", International Journal of Mining and Mineral
Engineering (IJMME), Inderscience Enterprises Ltd, Geneve, Switzerland, Geneva, 2017.
[2] B.M. Maybee, "A Risk-based Evaluation Methodology for Underground Mine Planning", NR71893 PhD,
Laurentian University Canada, 2011.
[3] D.D. Munro, "Incline caving as a massive mining method", The Journal of The Southern African Institute of
Mining and Metallurgy, 113, 2013, pp. 555-563.
[4] S. Opoku, "Modelling the optmum interface between open pit and underground mining for gold mines", PhD,
University of the Witwatersrand, Johannesburg, 2013.
[5] I. Litvinchev and V. Tsurkov, "Aggregation in Large-Scale Optimization", Springer US, 2003.
[6] علی حیدری بیوکی، طاهره خادمی و حسن زارع، " توسعه روش تحلیل پوششی دادهها به منظور خوشهبندی مشتریان اعتباری بانکها" مجله مدلسازی در مهندسی، سال 13 ، شمارۀ 4، 1394، صفحه 59-74.
[7] هادی مختاری، معین بهادری و جواد غلامنژاد، "برآورد ارزش اقتصادی بلوک استخراجی برای طراحی پیشرویها در معادن روباز با در نظرگرفتن عدم قطعیت عیار، نمونۀ مطالعاتی: معدن سنگ آهن چادرملو"، مجله مدلسازی در مهندسی، سال 14 ، شمارۀ 47 ، 1395 ، صفحۀ 243-254.
[8] رضا خدایی، محمدعلی بالافر و سید ناصر رضوی، » بسط پرسوجو با خوشه بندی اسناد شبه بازخورد با شباهت حساس به پرسوجو « مجله مدلسازی در مهندسی، سال 14 ، شمارۀ 47، 1395، صفحه 229-240.
[9] R. Epstein, S. Gaete and F. Caro, “Optimizing long term planning for underground copper mines”, 5thInternational conference Proceedings of Copper, Santiago, 2003.
[10] A. M. Newman and M. Kuchta, "Using aggregation to optimize long-term production planning at an underground mine", European Journal of Operational Research 176, 2007, pp. 1205-1218.
[11] A. Weintraub, M. Pereira and X. Schultz, "A Priori and A Posteriori Aggregation Procedures to Reduce Model Size in MIP Mine Planning Models", Electronic Notes in Discrete Mathematics, 30, 2008, pp. 297–302.
[12] D.C. Panigrahi and H.B. Sahu, "Application of hierarchical clustering for classification of coal seams with respect to their proneness to spontaneous heating", Mining Technology, 103, 2004, pp. 97-106.
[13] Y. Pourrahimian, H. Askari Nasab and D. Tannant, "A multi-step approach for block-cave production scheduling optimization", International Journal of Mining Science and Technology, 23, 2013, pp. 739-750.
[14] Y. Pourrahimian and H. Hooman Askari Nasab, "An application of mathematical programming to determine the best height of draw in block-cave sequence optimisation, Mining Technology", Trans. Inst. Min. Metall. A, 123, 2014, pp. 162-172.
[15] S. Ramazan and R. Dimitrakopoulos, "Recent applications of operations research in open pit mining", SME Transactions, 316, 2004, pp. 73-78.
[16] S. Ramazan, "The New Fundamental Tree Algorithm for Production Scheduling of Open Pit Mines". European Journal of Operational Research, 177(2), 2007, pp.1153-1166.
[17] M. Zhang, “Combining Genetic Algorithms and Topological Sort to Optimise Open Pit Mine Plans”, Paper presented at the 15th International Symposium on Mine Planning and Equipment Selection, (MPES), Torino, Italy, 2006.
[18] N. Boland, I. Dumitrescu, G. Froyland and A.M. Gleixner, "LP-based disaggregation approaches to solving the open pit mining production scheduling problem with block processing selectivity", Computers & Operations Research, 36, 2009, pp. 1064-1089.
[19] H. Ren and E. Topal, "Using Clustering Methods for Open Pit Mine Production Scheduling", Journal of Research Projects Review, 3, 2014, pp. 45-49.
[20] E. Jelvez, N. Morales, P. Nancel-Penard, J. Peypouquet and P. Reyes, "Aggregation heuristic for the open-pit block scheduling problem", European Journal of Operational Research, 249, 2016, pp. 1169-1177.
[21] A. Bley, N. Boland, Ch. Fricke and G. Froyland, "A Strengthened Formulation and Cutting Planes for the Open Pit Mine Production Scheduling Problem", Computers & Operations Research, 37(9), 2010, pp.1641-1647.
[22] M. Tabesh and H. Askari Nasab, "Automatic Creation of Mining Polygons using Hierarchical Clustering Techniques", Journal of Mining Science, 49(3), 2013, pp. 426-439.
[23] M. Tabesh, C. Mieth and H. Askari Nasab, "A Multi-Step Approach to Long-Term Open-Pit Production Planning", International Journal of Mining and Mineral Engineering, 5(4), 2014, pp. 273-298.
[24] D. Sloan, Mine Management, Chapman and Hall, London, 1983.
[25] L. Feng, M. Qiu, Y-X. Wang, Q-L. Xiang, Y-F. Yang and K. Liu, "A Fast Divisive Clustering Algorithm Using an Improved Discrete Particle Swarm Optimizer", Pattern Recognition Letters, 31, 2010, pp. 1216-1225.
[26] F. Nezhadshahmohammad, Y. Pourrahimian and H. Aghababaei, "Presentation of a multi-index clustering technique for the mathematical programming of block-cave scheduling", International Journal of Mining Science and Technology, 2017.
[27] M. Tabesh and H. Askari Nasab, "Automatic Creation of Mining Polygons Using Hierarchical Clustering Techniques", Mining Science, 49, 2013, pp. 426-440.
[28] F. Nezhadshahmohammad, H. Aghababaei and Y. Pourrahimian, "Conditional draw control system in block-cave production scheduling using mathematical programming", International Journal of Mining, Reclamation and Environment, 2017, pp. 1-24.