پیش بینی طرح اختلاط بهینه برای بهسازی خاک رس نرم با استفاده از شبکه های عصبی مصنوعی

نوع مقاله: مقاله عمران

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی، دانشگاه رازی، کرمانشاه، ایران

2 گروه مهندسی عمران، دانشکده فنی مهندسی، دانشگاه صنعتی کرمانشاه، ایران

چکیده

استفاده و کاربرد شبیه سازی مصنوعی در پیش بینی رفتار مصالح علی الخصوص هنگامی که نتایج واقعی داشته باشیم از نظر زمان و هزینه از اهمیت ویژه ای برخوردار است. بر این اساس در این پژوهش داده های آزمایش بدست آمده از آزمایش تک محوری روی نمونه های خاک تثبیت شده توسط آهک، پسماند و سیلیکات سدیم با شبکه عصبی (GRNN) و الگوریتم ژنتیک (برنامه ریزی بیان ژن (GEP)) مورد بررسی قرار گرفته است. بنابراین با توجه به نتایج مقاومت فشاری محدود نشده برای درصدهای محدودی که آزمایش انجام شده است شبیه سازی مصنوعی انجام و راستی آزمایی صورت گرفته است سپس با توسعه شبکه عصبی و الگوریتم ژنتیک برای حالت ها و درصدهای مختلف اختلاط در بهسازی خاک، درصد اختلاط بهینه تعیین شده است که با توجه به نتایج بدست آمده از مدل الگوریتم ژنتیک، طرح اختلاط بهینه برای این نوع خاک رس در 6 درصد آهک، 6 درصد پسماند صنعتی و 1.5 درصد سیلیکات سدیم می باشد. نتایج شبکه عصبی دارای قدرت پیش بینی مناسب تری نسبت به الگوریتم ژنتیک می باشد به طوری که بهترین پیش بینی برای مدل 90 روزه شبکه عصبی با مقدار R^2 و RMSE به ترتیب برابر با 0.998 و 0.019 وکمترین پیش بینی برای مدل 7 روزه الگوریتم ژنتیک با مقدار R^2 و RMSE به ترتیب برابر با 0.967 و 0.059 می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of optimal mixing design for stabilized soft clay soil using Artificial Neural Networks

نویسندگان [English]

  • hadis Bibak 1
  • jahangir khazaie 1
  • Hossein Moayedi 2
1 Department of Civil Engineering, Razi University Kermanshah, Iran
2 Department of Civil Engineering, Kermanshah University of Technology, Kermanshah, Iran
چکیده [English]

The application of artificial simulations in predicting the behavior of materials, especially when we have real results, is very important in terms of time and cost. Therefore, in this study the data collected from unconfined compressive strength test on stabilized soil samples with lime, waste industrial and sodium silicate by neural network (GRNN) and genetic algorithm (GEP) have been investigated. Moreover, based on the results of unconfined compressive strength for the limited percentages of the experiment, simulation has been performed and verified. Then, with the development of the neural network and genetic algorithm for different states and percentages of mixing in stabilized soil, the optimized mixing percentage has been set. According to the results of genetic algorithm model, the optimal mixing design for this type of clay is 6% lime, 6% industrial waste, and 1.5% sodium silicate. The results of neural network had better predictive power than the genetic algorithm, so that the best prediction for the 90-day model of the neural network with R2 and RMSE values is 0.998 and 0.019, respectively, and the least prediction for the 7-day model of genetic algorithm with R2 and RMSE is 0.967 and 0.059, respectively.

کلیدواژه‌ها [English]

  • Waste material
  • Soil stabilization
  • Soft clay
  • Neural network (GRNN)
  • Genetic algorithm (Gen Expression Programming (GEP) )
 

[1] Al-Rawas, A. A., Hago, A. W., & Al-Sarmi, H. (2005). “Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman”. Building and Environment, 40(5), 681-687.

[2] Guney, Y., Sari, D., Cetin, M., & Tuncan, M. (2007). “Impact of cyclic wetting–drying on swelling behavior of lime-stabilized soil”. Building and Environment, 42(2), 681-688.

[3] Azadegan, O., Yaghoubi, M. J., & Pourebrahim, G. R. (2010). “Effect of completely dried materials in natural condition on mechanical properties of lime/cement treated soils”. Electron. J. Geotech. Eng, 15, 1727-1736.

[4] Cardoso, R., & das Neves, E. M. (2012). “Hydro-mechanical characterization of lime-treated and untreated marls used in a motorway embankment”. Engineering geology, 133, 76-84.

[5] Khemissa, M., & Mahamedi, A. (2014). “Cement and lime mixture stabilization of an expansive overconsolidated clay”. Applied Clay Science, 95, 104-110.

[6] Moayedi, H., Huat, B. B., Moayedi, F., Asadi, A., & Parsaie, A. (2011). “Effect of sodium silicate on unconfined compressive strength of soft clay”. Electronic Journal of Geotechnical Engineering, 16, 289-295.

[7] Ureña, C., Azañón, J. M., Caro, J. M., Irigaray, C., Corpas, F., Ramírez, A., ... & Mochón, I. (2012). “Use of Biomass Ash as a stabilization agent for expansive marly soils (SE Spain)”. EGU General Assembly.

[8] Vakili, M. V., Chegenizadeh, A., Nikraz, H., & Keramatikerman, M. (2016). “Investigation on shear strength of stabilised clay using cement, sodium silicate and slag”. Applied Clay Science, 124, 243-251.

[9] Sol-Sánchez, M., Castro, J., Ureña, C. G., & Azañón, J. M. (2016). “Stabilisation of clayey and marly soils using industrial wastes: pH and laser granulometry indicators”. Engineering geology, 200, 10-17.

[10] Modarres, A., & Nosoudy, Y. M. (2015). “Clay stabilization using coal waste and lime—Technical and environmental impacts”. Applied clay science, 116, 281-288.

[11] Mohanty, S. K., Pradhan, P. K., & Mohanty, C. R. (2017). Stabilization of expansive soil using industrial wastes. GEOMECHANICS AND ENGINEERING, 12(1), 111-125.

]12[ حداد، ع،. دستی­گردی، س.(1394). "ارزیابی پتانسیل رمبندگی خاک ماسه ای لای دار تثبیت شده با میکروسیلیس، بنتونیت و خاکستر پوسته برنج"، نشریه مدل سازی در مهندسی، دوره 13، شماره 42،پاییز 1394، صفحه 87-101.

[13] Khazaei, J., & Moayedi, H. (2017). “Soft expansive soil improvement by eco-friendly waste and quick lime”. Arabian Journal for Science and Engineering, 1-10.

[14] Al-Bared, M. A. M., Marto, A., & Latifi, N. (2018). “Utilization of recycled tiles and tyres in stabilization of soils and production of construction materials–A state-of-the-art review”. KSCE Journal of Civil Engineering, 22(10), 3860-3874.

[15] Latifi, N., Vahedifard, F., Ghazanfari, E., & Rashid, A. S. A. (2018). “Sustainable usage of calcium carbide residue for stabilization of clays”. Journal of Materials in Civil Engineering, 30(6), 04018099.

]16[شفابخش، غ،. فتحی، ف،. زایرزاده، ع،. (1389)." اولویت بندی اصلاح نقاط پرحادثه راه‏ها با کمک شبکه عصبی مصنوعی"،. نشریه مدل سازی در مهندسی، دوره 8، شماره 20،بهار 1389، صفحه 71-81.

[17] Hanna, A. M., Ural, D., & Saygili, G. (2007). “Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data”. Soil Dynamics and Earthquake Engineering, 27(6), 521-540.

[18] Das, S. K., & Basudhar, P. K. (2008). “Prediction of residual friction angle of clays using artificial neural network”. Engineering Geology, 100(3-4), 142-145.

[19] Gholamnejad, J., Bahaaddini, H., & Rastegar, M. (2013). Prediction of the deformation modulus of rock masses using Artificial Neural Networks and Regression methods. Journal of Mining and Environment, 4(1), 35-43.

]20[ امامی، م،. یثربی، س.(1393). "کاربرد شبکه عصبی مصنوعی در تفسیر نتایج آزمایش پرسیومتری". مجله عمران مدرس، جلد 4، صفحه 11-25.

]21[ کوهساری، ح،. نجفی، الف،. علی­الهی، ح،. آدم­پیرا، م،.(1394). "بررسی عوامل مؤثر بر عملیات تراکم دینامیکی در خاک های دانه ای مبتنی بر روش فازی"،.نشریه مدل سازی در مهندسی، دوره 13، شماره 43،زمستان 1394، صفحه 158-143.

[22]  Mozumder, R. A., & Laskar, A. I. (2015). “Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network”. Computers and Geotechnics, 69, 291-300.

[23] Alemdag, S., Gurocak, Z., & Gokceoglu, C. (2015). “A simple regression based approach to estimate deformation modulus of rock masses”. Journal of African Earth Sciences, 110, 75-80.

]24[ احدیان، ج،. بهروزی، ف،. (1395). "کاربرد سیستم تطبیقی ANFIS در تخمین پتانسیل تحکیم خاک‌های رسی"،. نشریه مدل سازی در مهندسی، دوره 14، شماره 45،تابستان 1395، صفحه 17-31.

[25] Moayedi, H., & Hayati, S. (2018). “Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods”. Applied Soft Computing, 66, 208-219.

[26] Ghorbani, A., & Hasanzadehshooiili, H. (2018). “Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing”. Soils and foundations, 58(1), 34-49.

]27[ ویسی، ه،. مفاخری، ک،. باقری­شورکی، س. "مبانی شبکه­های عصبی (ساختارها، الگوریتم­ها و کاربردها". انتشارات نص، چاپ چهارم،1396.

]28[ زهرایی، ب،. حسینی، س. "الکوریتم ژنتیک و بهینه­سازی مهندسی" تهران: انتشارات گوتنبرگ، بهمن 1393.

 [29] Koza, J. R. (1994). “Genetic programming as a means for programming computers by natural selection". Statistics and computing, 4(2), 87-112.