Smart home optimized energy management considering energy storage, solar cell, electric vehicle and load response

Document Type : Power Article


1 electrical faculty, babol industrial university

2 babol university


In a smart home, all its internal components interact with each other through an integrated system and environmentally reasonable logic. In this house, energy management (EMS) can play a role in reducing energy costs. Therefore, in this paper, given the increasing importance of this discussion, the operation of smart home with the presence of electric vehicles with the capability of exchanging power with the network, the Energy storage system and solar panels have been modeled and evaluated in the framework of mixed integer linear programming. In this paper Various studies including the sale of electrical energy produced by solar panels to power grid, Loads with time-consuming movement such as washing machines as well as various demand response strategies based on energy price have been considered to evaluate the economic and technical effects of electric vehicles, energy storage batteries And solar panels. In assessing the performance of solar panels, uncertainty regarding the prediction of solar power is considered, and the proposed model has been analyzed by considering the conditional value at risk (CVAR) criteria. The proposed model is implemented in the GAMS software and the results indicate that the use of additional power systems will significantly reduce the cost of smart home power.


Main Subjects

[1] M. Wissner “The Smart Grid—A Saucerful of Secrets?”, Applied Energy, Vol. 88, No. 7, 2011, pp. 2509-2518
[2] P. Siano, “Demand response and smart grids –a survey”, Renewable and Sustainable Energy Reviews, Vol. 30, 2014, pp. 461-478
[3] Li XH, Hong SH, “User-expected price-based demand response algorithm for a home-to-grid system”, Energy, Vol.­64, 2014, pp. 437–49
[4] S. Borlease, “Smart grids: infrastructure, technology and solutions”, 1st Edition, CRC Press, 2013.
[5] Xue X, Wang S, Sun Y, Xiao F, ”An interactive power demand management strategy for facilitating smart grid optimization”, Appl Energy, Vol.116, 2014,  pp. 297–310
[6] N. Venkatesan, J. Solanki, and SK. Solanki, ” Residential demand response model and impact on voltage profile and losses of an electric distribution grid”, Appl Energy, Vol. 96, 2012, pp. 84–91
[7] M. Shakeri, M. Shayestegan, H. Abunima, S. M. Salim Reza, M. Akhtaruzzaman, A. R. M. Alamoud, K. Sopian and N. Amin, ”An intelligent system architecture in home energy management systems (HEMS) for efficient demand response in smart grid”, Energy and Buildings, Vol. 138, 2017, pp. 154-64.
[8] M. Marzband, H. Alavi, S. S. Ghazimirsaeid, H. Uppal and T. Fernando, "Optimal energy management system based on stochastic approach for a home Microgrid with integrated responsive load demand and energy storage", Sustainable Cities and Society, Vol. 28, 2017, pp. 256-64
[9] M. S. Ahmed, A. Mohamed, T. Khatib, H. Shareef, R. Z. Homod and J. A. Ali, "Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm", Energy and Buildings, Vol. 138, 2017, pp. 215-27
[10] T. AlSkaif, A. C. Luna, M. G. Zapata, J. M. Guerrero and B. Bellalta," Reputation-based joint scheduling of households appliances and storage in a microgrid with a shared battery," Energy and Buildings, Vol. 138, 2017, pp.­228-39
[11] E. Shirazi, A. Zakariazadeh and Sh. Jadid, "Optimal joint scheduling of electrical and thermal appliances in a smart home environment", Energy Conversion and Management, Vol. 106, 2015, pp. 181- 93
[12] M. Rastegar, M. Fotuhi-Firuzabad and H. Zareipour, "Home energy management incorporating operational priority of appliances", International Journal of Electrical Power & Energy Systems, Vol. 74, 2016, pp. 286-92
[13] E. Shirazi and Sh. Jadid, "Optimal residential appliance scheduling under dynamic pricing scheme via HEMDAS", Energy and Buildings, Vol. 93, 2015, pp. 40-9
[14] A. Anees and Y. P. Chen, "True real time pricing and combined power scheduling of electric appliances in residential energy management system", Applied Energy, Vol. 165, 2016, pp. 592-600
[15] H. A. Özkan, "Appliance based control for Home Power Management Systems", Energy, Vol. 114, 2016, pp. 693-707
[16] X. Chen, T. Wei, S. Hu,” Uncertainty-aware household appliance scheduling considering dynamic electricity pricing in smart home”, IEEE Transactions on Smart Grid, Vol. 4, 2013. pp. 932–94
[17] R. Hemmati, H. Saboori, “Stochastic optimal battery storage sizing and scheduling in home energy management systems equipped with solar photovoltaic panels “ , Energy and Buildings, Vol. 152, October 2017, pp. 290-300
[18] C. Sun, F. Sun, S.J. Moura, “Nonlinear predictive energy management of residential buildings with photovoltaics & batteries”, J. Power Sources, Vol.325, 2016. pp.723-73
[19] M. Pipattanasomporn, M. Kuzlu, and S. Rahman,” An algorithm for intelligent home energy management and demand response analysis,” IEEE Transactions on Smart Grid, Vol.3, 2012, pp.2166–2173
[20] M. Kuzlu, M. Pipattanasomporn, S. Rahman,” Hardware demonstration of a home energy management system for demand response applications,” IEEE Transactions on Smart Grid,  Vol.3 , 2012, pp.1704–1711
[21] S. Shao, M. Pipattanasomporn, S. Rahman,” Demand response as a load shaping tool in an intelligent grid with electric vehicles,” IEEE Transactions on Smart Grid, Vol.2, 2011, pp.624–631
[22] E. Matallanas, MC. Cagigal, A. Gutierrez, FM. Huelin, EC. Martin and D. Masa,” Neural network controller for active demand-side management with PV energy in the residential sector”, Applied Energy, Vol.91, 2012, pp.90–97
[23] R. Missaoui, H. Joumaa, S. Ploix, S. Bacha,” Managing energy smart homes according to energy prices: analysis of a building energy management system”, Energy and Build, Vol.4, 2014, pp.155–167
[24] A. Weis, P. Jaramillo, and J. Michalek,” Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric power systems with high wind penetration”, Applied Energy, Vol.115 , 2014, pp.190–204.
[25] J. Zhao, S. Kucuksari, E. Mazhari, YJ. Son,” Integrated analysis of high-penetration PV and PHEV with energy storage and demand response”, Applied Energy, Vol.112, 2013, pp.35–51
[26] Sh. Umetani, Y. Fukushima, H. Morita, ” A linear programming based heuristic algorithm for charge and discharge scheduling of electric vehicles in a building energy management system ”, Omega, Vol. 67, March 2017, pp. 115-122
[27] O. Erdinc,” Economic impacts of small-scale own generating and storage units and electric vehicles under different demand response strategies for smart households”, Applied Energy , Vol.126, 2014, pp.142–150
[28] جمشید آقایی، امین رحیمی و محمدرضا کریمی،" هماهنگی نیروگاه­های بادی و دستگاه­های ذخیره­ساز سیستم قدرت در مسئله برنامه‌ریزی امنیت- مقید مشارکت واحدها با استفاده از بهینه‌سازی استوار"، مجله مدل‌سازی در مهندسی، دوره 16، شماره 53 ، تابستان 1397
[29] سامان احمدی ، محمدتقی بطحایی،"مدل‌سازی و شبیه‌سازی راهبردهای بهینه مدیریت انرژی در خودروی هیبرید پیل سوختی"، مجله مدل‌سازی در مهندسی، سال پانزدهم، شماره 50 ، پاییز 139
[30] A. Ghahgharaee, A. Zakariazadeh, Sh. Jadid , A. Kazemi,” Stochastic operational scheduling of distributed energy resources in a large scale virtual power plant”, Electrical Power and Energy Systems, Vol.82, 2016, pp. 608–620
[31] میلاد غلامی فرد ، نیما امجدی، حسین شریف‌زاده ،"پخش بار بهینه احتمالاتی به‌منظور تعیین قیمت‌های حاشیه­ای محلی در حضور تولید بادی"، مجله مدل‌سازی در مهندسی، سال پانزدهم، شماره 48 ، بهار 1396
[32] Ditiro Setlhaolo, Sam Sichilalu, Jiangfeng Zhang,” Residential load management in an energy hub with heat pump water heater”, Applied Energy, Vol. 208, 2017, pp.551-560
[33] A. J. Conejo, M. Carrión, J. M. Morales,” Decision Making Under Uncertainty in Electricity Markets”, New York, Springer, 2010.