Investigating the effect on the position in advancing and retreating side on the mechanical properties of the joint samples in the friction stir welding of 6061 and 5054 aluminum alloys

Document Type : Mechanics article


1 Department of Mechanic, Tabriz University, Tabriz, 5166614766, Iran

2 Assoc. Prof., Mech. Eng., Tabriz Univ., Tabriz, Iran


Friction stir welding is a new method, which is classified in the category of solid state bonding processes. In such processes during the process, the workpiece and tool materials do not melt, and the process temperature is always at a lower level than the melting temperature. This technique is used to joint aluminum alloys and does not have any restrictions on use such as fusion welding. In the present study, the experimental study of the effect of the position of metal with higher strength on the advancing and retreating side and on the ultimate tensile stress and fine hardness of the samples obtained from the joint specimens by the friction stir welding method. Two aluminum alloys, 6061 and 5054, were used, and each of these alloys was placed in two experimental and two directions on the both sides. By examining the tensile test graphs from the two experimental conditions, it was found that the samples in which the metal with higher strength placed on the advancing side found to have a higher final strength in the welded specimen. When the metal with higher strength in the retreating side was placed, the final strength of the bonded samples from both base alloys was lower and the softness and strain of the break in the samples increased the firmness of the base metals. The micro hardness of both experimental modes was studied and a W-shaped pattern was obtained for both experimental friction stir welding.


[1] R.S. Mishra, Z. Ma, "Friction stir welding and processing, Materials Science and Engineering", Materials Science and Engineering, Vol. 50, NO. 1-2, August 2005, pp. 1-78.
[2] G. Buffa, L. Fratini, F. Micari, R. Shivpuri, "Material flow in FSW of T-joints: experimental and numerical analysis", International Journal of Material Forming, Vol,  1, NO. 1, April 2008, pp. 1283-1286.
[3] M. Pourali, A. Abdollah-Zadeh, T. Saeid, and F. Kargar, "Influence of welding parameters on intermetallic compounds formation in dissimilar steel/aluminum friction stir welds," Journal of Alloys and Compounds, vol. 715, pp. 1-8, 2017.
[4] D. Jayabalakrishnan and M. Balasubramanian, "Friction Stir Welding of Dissimilar Butt Joints with Novel Joint Geometry," Acta Physica Polonica, A., vol. 133, no. 1, 2018.
[5] M. Aliha, M. Shahheidari, M. Bisadi, M. Akbari, and S. Hossain, "Mechanical and metallurgical properties of dissimilar AA6061-T6 and AA7277-T6 joint made by FSW technique," The International Journal of Advanced Manufacturing Technology, vol. 86, no. 9-12, pp. 2551-2565, 2016.
[6] M. Ahmed, S. Ataya, M. E.-S. Seleman, H. Ammar, and E. Ahmed, "Friction stir welding of similar and dissimilar AA7075 and AA5083," Journal of Materials Processing Technology, vol. 242, pp. 77-91, 2017.
[7] K. N. Kumar and P. R. Raju, "Dissimilar materials of friction stir welding—Overview," International Journal of Engineering Trends and Technology (IJETT)–Vol-44 February, 2017.
[8] S. Jain, N. Sharma, and R. Gupta, "Dissimilar alloys (AA6082/AA5083) joining by FSW and parametric optimization using Taguchi, grey relational and weight method," Engineering Solid Mechanics, vol. 6, no. 1, pp. 51-66, 2018.
[9] B. Huang, Q. Qin, D. Zhang, Y. Wu, and X. Su, "Microstructure and Mechanical Properties of Dissimilar Joints of Al-Mg 2 Si and 5052 Aluminum Alloy by Friction Stir Welding," Journal of Materials Engineering and Performance, pp. 1-10, 2018.
[10] N. Sathari, A. Razali, M. Ishak, and L. Shah, "Mechanical strength of dissimilar AA7075 and AA6061 aluminum alloys using friction stir welding," International Journal of Automotive and Mechanical Engineering, vol. 11, p. 2713, 2015.
[11] Y. Sun, N. Tsuji, and H. Fujii, "Microstructure and mechanical properties of dissimilar friction stir welding between ultrafine grained 1050 and 6061-t6 aluminum alloys," Metals, vol. 6, no. 10, p. 249, 2016.
]12 [عباس هنربخش رئوف و احسان غریبشاهیان، "شبیه سازی المان محدود جوشکاری اغتشاشی اصطکاکی و تاثیر پارامترهای موثر بر آن در آلیاژ 6061 آلومینیوم" ،نشریه مدل سازی در مهندسی، دوره 11، شماره 35، زمستان 1392، صفحه 1-9.
]13[ رحمن سیفی، محسن موسوی ریگی و وحید آذر فر، " بررسی تجربی و عددی تأثیر شکل جوش در انتهای اتصال سپری بر تنش‌های پسماند "، نشریه مدل سازی در مهندسی، دوره 10، شماره 29، تابستان 1391، صفحه 81-90.
]14 [روح اله وحدتی و مهرداد عضو امینیان، " شبیه سازی جوش نقطه ای مقاومتی به روش MLPG جهت تعیین تنش های حرارتی- مکانیکی و تنش های پسماند "، نشریه مدل سازی در مهندسی، دوره 11، شماره 34، پاییز 1392، صفحه 63-75.
[15] A. Simar, T. Pardoen, B. De Meester, "Effect of rotational material flow on temperature distribution in friction stir welds", Science and Technology of Welding and Joining, Vol. 12, NO. 4, December 2007, pp. 324-333.
[16] D. Devaiah, K. Kishore, and P. Laxminarayana, "Optimal FSW process parameters for dissimilar aluminium alloys (AA5083 and AA6061) Using Taguchi Technique," Materials Today: Proceedings, vol. 5, no. 2, pp. 4607-4614, 2018.
[17] Standard test methods for tension testing of metallic materials, ASTM. E8M;2009.
[18] ASTM, (1996) E 92-82: Standard Test Method for Vickers Hardness of Metallic Materials, 1996 Annual Book of ASTM Standards, Sec. 03, 01, ASTM, Easton, MD.
[19] H. Schmidt, J. Hattel, "Modelling heat flow around tool probe in friction stir welding", Science and Technology of Welding and joining, Vol. 10, NO. 2,  December 2013, pp. 176-186.
[20] Z. Zhang, H. Liu, "Effect of pin shapes on material deformation and temperature field in friction stir welding", Trans Chin Weld Inst, Vol. 32, NO. 3,  August 2011, pp. 5-8.
[21] S. Ji, X. Meng, Z. Liu, R. Huang, Z. Li, "Dissimilar friction stir welding of 6061 aluminum alloy and AZ31 magnesium alloy assisted with ultrasonic", Materials Letters, Vol. 201, NO. 2, August 2017, pp. 173-176.
[22] V. Fahimpour, S. Sadrnezhaad, F. Karimzadeh, "Microstructure and mechanical property change during FSW and GTAW of Al6061 alloy", Metallurgical and Materials Transactions A, Vol. 44, NO. 5, May 2013, pp. 2187-2195.
[23] J. Yang, D. Wang, B. Xiao, D. Ni, Z. Ma, "Effects of rotation rates on microstructure, mechanical properties, and fracture behavior of friction stir-welded (FSW) AZ31 magnesium alloy", Metallurgical and Materials Transactions A, Vol. 44, NO. 1, January 2013, pp. 517-530.