Blood flow analysis in the circle of Willis using computed tomography scan images and fluid-structure interactions method

Document Type : Mechanics article


1 MSc/University of Tehran -Faculty of new sciences and technologies

2 Assistant Professor/University of Tehran

3 University of Tehran - - Faculty of new sciences and technologies


Study of blood flow in cerebral arteries is of great importance in recognition of initiation and critical conditions of arterial diseases in the brain. So, in this investigation with the novel assumption of arteroal wall deformability, blood flow and arterial wall shear stress in the circle of Willis were analyzed. CT angiography images were used to design the geometry and available model for solving blood flow. Finite elements method was utilized to solve the problem. With the study of the wall of the arteries, the behavior of the hyperelastic was assumed. Therefore, the solution of the flow is studied by the method of fluid-structure interaction. The boundary conditions of the fluid (blood), including multi-branching as well as autoregulation, were investigated at the inlet and outlet of the arteries. The maximum shear stress on the wall was equal to 3.9 Pascal. In addition, blood pressure in the upper arteries in circle of Willis was significantly reduced as compared to the blood pressure at the outlet of the heart. Analysis of shear stress contour in diastol showed that the maximum shear stress occurs in PCA, while it is minumum in initial parts of PCA. Approach of this study to use radiological images of specific humans can be helpful in diagnosis of initiation and development of arterial diseases. Moreover, in acute situations of these diseases, through anticipating of dangers such as tearing of the vessels due to variations of wall shear stress, such a performed simulation may aid physicians for probable treatments.


Main Subjects

[1]   J. Cebral, P. Lohner, J. Yim, and J. Burgess, "Blood flow predictions during neuro-surgery and carotid artery stenting", International Journal of Bioelectromagnetism, Vol. 3, 2001, pp. 1-12.
[2]   J. Cebral, R. Lohner, P. L. Choyke, and P. J. Yim, "Parallel patient-specific computational haemodynamics", Lecture notes in computer science, 2002, pp. 18-34.
[3]   J. R. Cebral, M. A. Castro, O. Soto, R. Löhner, and N. Alperin, "Blood-flow models of the circle of Willis from magnetic resonance data", Journal of Engineering Mathematics, Vol. 47, 2003,  pp. 369-386.
[4]   C. S. Kim, C. Kiris, D. Kwak, and T. David, "Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity", Journal of biomechanical engineering, Vol. 128, 2006, pp. 194-202.
[5]   S. Moore, T. David, J. Chase, J. Arnold, and J. Fink, "3D models of blood flow in the cerebral vasculature", Journal of biomechanics, Vol. 39, 2006, pp. 1454-1463.
[6]   G. J. Siegel, R. Albers, S. Brady, and D. Price, "Basic Neurochemistry: Molecular, Cellular, and Medical Aspects", American journal of neuroradiology, Vol. 27, 2006, p. 465.
[7]   D. A. Steinman, Y. Hoi, P. Fahy, L. Morris, M. T. Walsh, N. Aristokleous, et al., "Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge", Journal ofbiomechanical engineering, Vol. 135, 2013, p. 021016.
[8]   F. Khodaee, B. Vahidi, and N. Fatouraee, "Analysis of mechanical parameters on the thromboembolism using a patient-specific computational model", Biomechanics and modeling in mechanobiology, Vol. 15, 2016, pp. 1295-1305.
[9]   J. Alastruey, K. Parker, J. Peiró, S. Byrd, and S. Sherwin, "Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows", Journal of biomechanics, Vol. 40, 2007, pp. 1794-1805.
[10] D. Ivanov, A. Dol, O. Pavlova, and A. Aristambekova, "Modeling of human circle of Willis with and without aneurisms", Acta of Bioengineering and Biomechanics, Vol. 16, 2014,  pp. 121-129.
[11] P. Berg, D. Stucht, G. Janiga, O. Beuing, O. Speck, and D. Thévenin, "Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging", Journal of biomechanical engineering, Vol. 136, 2014,  p. 041003.
 [12]            K. Bathe, "ADINA Theory and Modeling Guide", pp. 82-111, Watertown, ADINA R&D Inc, 2002.
[13] A. Valencia, H. Figueroa, R. Rivera, and E. Bravo, "Sensitivity analysis of fluid structure interaction in a cerebral aneurysm model to wall thickness and elastic modulus", Advances and Applications in Fluid Mechanics, Vol. 12, NO. 1, 2012, pp.49-66.
[14] A. Valencia, P. Burdiles, M. Ignat, J. Mura, E. Bravo, R. Rivera, et al., "Fluid structural analysis of human cerebral aneurysm using their own wall mechanical properties", Computational and mathematical methods in medicine, Vol. 2013, 2013, pp.1-18.
[15] J. Liu, "Open and traction boundary conditions for the incompressible Navier–Stokes equations", Journal of Computational Physics, Vol. 228, 2009, pp. 7250-7267.
[16] Gasser, T. Christian, Ray W. Ogden, and Gerhard A. Holzapfel. "Hyperelastic modelling of arterial layers with distributed collagen fibre orientations", Journal of the royal society interface,Vol. 3, No. 6, 2006, pp. 15-35.
[17] Hsu, Ming-Chen, and Yuri Bazilevs. "Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulation", Finite Elements in Analysis and Design, Vol. 47, No. 6, 2011, pp. 593-599.
[18]  Plata, A. M., S. J. Sherwin, and R. Krams. "Endothelial nitric oxide production and transport in flow chambers: the importance of convection", Annals of biomedical engineering, Vol. 38, No. 9, 2010, pp. 2805-2816.
[19] Zhu, Guangyu, et al. "The role of the circle of Willis in internal carotid artery stenosis and anatomical variations: a computational study based on a patient-specific three-dimensional model", Biomedical engineering online, Vol. 14, No. 1, 2015, p. 107.
 [20] Nam, Seong-Won, et al. "Evaluation of aneurysm-associated wall shear stress related to morphological variations of circle of Willis using a microfluidic device", Journal of biomechanics, Vol. 48, No. 2, 2015, pp. 348-353.
[21]     غلامعلی شفابخش، حسین نادرپور و مانا معتمدی، "مدل‌سازی پاسخ بهینه روسازی آسفالتی به کمک روش اجزای محدود"، نشریه مدل‌سازی در مهندسی، دوره 14، شماره 47، زمستان 1395، صفحه 33-40.
[22]     محمد حاجی عزیزی، محمود رحمانی و نجف بیگلری، "تحلیل اجزای محدود سدهای زیرزمینی و نکات مهم در طراحی و اجزای آنها-مطالعه موردی سد زیرزمینی آبخوری در استان سمنان"، نشریه مدل‌سازی در مهندسی، دوره 12، شماره 38، پاییز 1393، صفحه 153-165.
[23]     غلامعلی شفابخش و احمد مهرابی، "تحلیل عددی روسازی انعطاف‌پذیر به روش میکروسازه‌ای"، نشریه مدل‌سازی در مهندسی، دوره 13، شماره 40، بهار 1394، صفحه 59-67.
[24] اسماعیل رحیم پور، بهمن وحیدی و زهرا ملاحسینی، "بررسی عددی رفتار کرنش سختی سلول‌های بنیادی مزنشیمال بر روی بسترهای الاستیک"، نشریه مدل‌سازی در مهندسی، پذیرفته شده برای انتشار، 1397.