Numerical modeling for thermal performance augmentation of nanofluid in solar flat plate collector equipped with twisted tape

Document Type : Mechanics article

Authors

1 Msc Student, Babol Noshirvani University of Technology

2 Assistant Professor, Babol Noshirvani University of Technology

Abstract

The aim of this work is to enhance thermal performance characteristics in a solar flat plate collector with inserts typical twisted tapes and Al2O3-water nanofluid as the working fluid. Using twisted tapes make contact surface area and swirl intensity to increase. Numerical present analysis of the thermal and fluid behaviors of the tubes with twisted tapes in different arrangements has been investigated under constant heat flux condition with the Reynolds number ranging from 4000 to 20000. For numerical solution of this problem, The Fluent commercial software has been used in which Realizable k-ε turbulence model was applied. According to the tests, the numerical results show that the twisted tape inserted in a solar flat plate collector induce swirling flows which help to improve fluid mixing, therefore increasing diameter ratio (D*) and revaluation of ratio (N) enhance heat transfer rate and the other hand, the pressure drop and also the friction factor increase. The maximum thermal performance factor of 1.08 is obtained by using twisted tapes with N = 7 and D* = 0.014 at the lowest Reynolds number of 4000

Keywords

Main Subjects


[1] D. Herranz, Design of a Solar Water Heating System in a Residential Building, Master’s Thesis in Energy Systems, Department of Technology and Built Environment University of Gavle, 2009.
[2] T. Sonawane, P. Patil, A. Chavhan, B. M. Dusane, A REVIEW ON HEAT TRANSFER ENHANCEMENT BY PASSIVE METHODS, International Research Journal of Engineering and Technology, Vol. 3, 2016, pp. 1567-1574.
[3] S. Choi, Developments and Applications of Non-Newtonian Flows, in: D.A. Siginer, H.P. Wang (Eds.), ASME, 66 1995, pp. 99–105.
[4] مسعود ضیائی راد و مریم بیگی هرچگانی، "مطالعه عددی انتقال حرارت و افت فشار در جریان اجباری نانوسیال داخل لوله‌‌ دندانه‌دار"، نشریه مدل‌سازی در مهندسی، دوره 15، شماره 49، تابستان 1396، صفحه 65- 76.
[5] رضا گورکی و حسین بیکی، "بررسی CFD انتقال حرارت جابجایی اجباری نانوسیالات در یک کانال حاوی ذرات کروی شکل"، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 52، بهار 1397، صفحه 28- 28.
[6] محمد شریفی اصل ؛ داود طغرایی؛ احمد رضا عظیمیان، "شبیه سازی عددی انتقال حرارت جابه جایی در جریان مغشوش غیرنیوتنی نانوسیال در یک لوله افقی مدور"، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 53، تابستان 1397، صفحه 10- 10.
[7] امید گزانه؛ محمد علی بهشتی نیا، " شبیه سازی و تحلیل فنی اقتصادی آبگرمکن خورشیدی برای کاربری مسکونی"، نشریه مدل‌سازی در مهندسی، دوره 13، شماره 43، زمستان 1394، صفحه 107- 119.
[8] عباس رجبی خانقاهی؛ علی عباس نژاد؛ مجید عمیدپور، " بهینه‌سازی همزمان پارامترهای طراحی آبگرمکن خورشیدی با درنظر گرفتن الگوی مصرف"، نشریه مدل‌سازی در مهندسی، دوره 15، شماره 48، بهار 1396، صفحه 111- 123.
[9] S. Eiamsa-ard, K. Kiatkittipong, Heat transfer enhancement by multiple twisted tape inserts and TiO2/water nanofluid, Applied Thermal Engineering, Vol. 70, No. 1, 2014, pp. 896-924.
[10] S. K. Saha, A. Dutta, S. K. Dhal, Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted-tape elements, International Journal of Heat and Mass Transfer, Vol. 44, No. 22, 2001, pp. 4211-4223.
[11] E. Y. Rios-Iribe, M. E. Cervantes-Gaxiola, E. Rubio-Castro, J. M. Ponce-Ortega, M. D. González-Llanes, C. Reyes-Moreno, O. M. Hernández-Calderón, Heat transfer analysis of a non-Newtonian fluid flowing through a circular tube with twisted tape inserts, Applied Thermal Engineering, Vol. 84, 2015, pp. 225-236.
[12] S. Jaisankar, T. K. Radhakrishnan, K. N. Sheeba, Experimental studies on heat transfer and friction factor characteristics of thermosyphon solar water heater system fitted with spacer at the trailing edge of twisted tapes, Applied Thermal Engineering, Vol. 29, No. 5, 2009, pp. 1224-1231.
[13] S. Eiamsa-ard, K. Kiatkittipong, W. Jedsadaratanachai, Heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes, Engineering Science and Technology, an International Journal, Vol. 18, No. 3, 2015, pp. 336-350.
[14] S. Eiamsa-ard, P. Promvonge, Performance assessment in a heat exchanger tube with alternate clockwise and counter-clockwise twisted-tape inserts, International Journal of Heat and Mass Transfer, Vol. 53, No. 7, 2010, pp. 1364-1372.
[15] P. Murugesan, K. Mayilsamy, S. Suresh, P. S. S. Srinivasan, Heat transfer and pressure drop characteristics in a circular tube fitted with and without V-cut twisted tape insert, International Communications in Heat and Mass Transfer, Vol. 38, No. 3, 2011, pp. 329-334.
[16] X. Zhang, Z. Liu, W. Liu, Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes, International Journal of Thermal Sciences, Vol. 58, 2012, pp. 157-167.
[17] V. N. Rao, M. N. Rajini, Mass transfer in circular conduit with coaxially placed twisted tape–disc assembly as turbulence promoter, Chemical Engineering and Processing: Process Intensification, Vol. 105, 2016, pp. 64-72.
[18] K. Y. Lim, Y. M. Hung, B. T. Tan, Performance evaluation of twisted-tape insert induced swirl flow in a laminar thermally developing heat exchanger, Applied Thermal Engineering, Vol. 121, 2017, pp. 652-661.
[19] A. Saravanan, J. S. Senthilkumaar, S. Jaisankar, Performance assessment in V-trough solar water heater fitted with square and V-cut twisted tape inserts, Applied Thermal Engineering, Vol. 102, 2016, pp. 476-486.
[20] S. D. Salman, A. A. H. Kadhum, M. S. Takriff, A. B. Mohamad. CFD simulation of heat transfer augmentation in constant heat-fluxed tube fitted with baffled twisted tape inserts. Aust J Basic Appl Sci, Vol. 7, 2013, pp. 488-496.
[21] S. D. Salman, A. A. H. Kadhum, M. S. Takriff, A. B. Mohamad. Numerical investigation of heat transfer and friction factor characteristics in a circular tube fitted with v-cut twisted tape inserts. Sci World J, ID 492762, 2013, pp. 1-8.
[22] S. D. Salman, A. A. H. Kadhum, M. S. Takriff, A. B. Mohamad. CFD analysis of heat transfer and friction factor characteristics in a circular tube fitted with quadrant-cut twisted tape inserts. Sci World J, ID 273764, 2013, pp. 1-8.
[23] Y. Hong, J. Du, S. Wang, Experimental heat transfer and flow characteristics in a spiral grooved tube with overlapped large/small twin twisted tapes, International Journal of Heat and Mass Transfer, Vol. 106, 2017, pp. 1178-1190.
[24]M. Farnam, M. Khoshvaght-Aliabadi, M. J. Asadollahzadeh, Heat transfer intensification of agitated U-tube heat exchanger using twisted-tube and twisted-tape as passive techniques, Chemical Engineering and Processing - Process Intensification, Vol. 133, 2018, pp. 137-147.
[25] A. M. Abed, H. Sh. Majdi, Z. Hussein, D. Fadhil, A. Abdulkadhim, Numerical analysis of flow and heat transfer enhancement in a horizontal pipe with P-TT and V-Cut twisted tape, Case Studies in Thermal Engineering, Vol. 12, 2018, pp. 749-758.
[26] C. Qi, M. Liu, T. Luo, Y. Pan, Z. Rao, Effects of twisted tape structures on thermo-hydraulic performances of nanofluids in a triangular tube, International Journal of Heat and Mass Transfer, Vol. 127, 2018, pp. 146-159.
[27] M. Jafaryar, M. Sheikholeslami, Z. Li, CuO-water nanofluid flow and heat transfer in a heat exchanger tube with twisted tape turbulator, Powder Technology, Vol. 336, 2018, pp. 131-143.
[28] A. Bejan, Turbulent Boundary Layer Flow, in: Convection Heat Transfer, Eds., 2013, pp. 320-368: John Wiley & Sons, Inc.
[29] F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA journal, Vol. 32, No. 8, 1994, pp. 1598-1605.
[30] M. I. Hasan, A. M. A. Rageb, M. Yaghoubi, Investigation of a Counter Flow Microchannel Heat Exchanger Performance with Using Nanofluid as a Coolant, Journal of Electronics Cooling and Thermal Control, 2012,Vol.2 No. 3, pp. 35-43.
[31] R. L. Webb, Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design, International Journal of Heat and Mass Transfer, Vol. 24, No. 4, 1981, pp. 715-726.
[32] D. Kim, Y. Kwon, Y. Cho, C. Li, S. Cheong, Y. Hwang, J. Lee, D. Hong, S. Moon, Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions, Current Applied Physics, Vol. 9, No. 2, Supplement, 2009, pp. 119-123.
[33] F. P. Incropera, P. D. Dewitt, T. L. Bergman, A. S. Lavine. Fundamentals of heat and mass transfer, 2006, pp. 468-478:John Wiley & Sons.