Seismic efficiency of self-centering braced frame under near-field pulse-like ground motions

Document Type : Civil Article

Author

iiees

Abstract

This research investigates the efficiency of the self-centering steel braced frame equipped with replaceable yielding fuses and post-tensioning cables subjected to far-field records and near-field pulse-like ground motions. For this purpose, engineering seismic demand parameters for tewelve self-centering steel braced frames under far-field ground motions are compared with those for near-field ground motions.The braced frames are different from seismic frame type, seismic site location, and the number of stories. The self-centering braced frames are designed using a limit-state design procedure and are simulated in OpenSees software. Nonlinear dynamic time-history analyses are conducted under design earthquake , DBE , level and maximum considerable earthquake , MCE , level. Findings demonstrate that the self-centering steel braced frames are capable of mitigating seismic damage under both near -field pulse - like and far - field ground motions, which are provided by features such as rocking behavior, re-centering action, and directing damage ability .

Keywords

Main Subjects


[1] P. G. Somerville, "Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity", Seismological Research Letters, Vol. 68, 1997, pp. 199-222.
[2] V. Calugaru and, M. Panagiotou ,"Seismic response of 20‐story base‐isolated and fixed‐base reinforced concrete structural wall buildings at a near‐fault site", Earthquake Engineering and Structural Dynamics, Vol. 43, 2014, pp. 927-948.
]3 [س. ر. حسینی واعظ و ح. نادرپور، "بررسی نحوه آرایش جداگرهای لرزه ای در ساختمانهای کوتاه مرتبه"، مجله مدل سازی در مهندسی. سال چهاردهم، شماره 46، 1395.
]4 [غ. قدرتی امیری، م. برارنیا، م. عابدپور و پ. نمیرانیان، "اثر برخورد سازه های مجاور بر نیازهای لرزه ای سازه های با جداگر لرزه ای در اثر زلزله"، مجله مدل سازی در مهندسی. سال نهم، شماره 24، 1390.
]5 [ه. شریعتمدار و م. کلانتری، "بررسی اثر جداگرهای لرزه ای بر جا به جایی‌های طبقات و تشکیل مفاصل پلاستیک"، مجله مدل سازی در مهندسی، سال اول، شماره 15، 1386.
[6] P. M. Clayton, "Self-Centering Steel Plate Shear Walls: Subassembly and Full-Scale Testing", PhD dissertation, 2014.
[7] G. Guerrini, "Seismic Behavior of Posttensioned Self-Centering Precast Concrete Dual-Shell Steel Columns", Journal of Structural Engineering, Vol. 28, 2014, pp. 129-132.
[8] R. W. Clough, and A. A. Huckelbridge, "Preliminary experimental study of seismic uplift of a steel frame.: Earthquake Engineering Research Center", College of Engineering, University of California, 1977.
[9] D. Roke, (2008). "Design concepts for damage-free seismic-resistant self-centering steel concentrically-braced frames", Proceedings of 14th WCEE (DVD, paper S16-01-006), Beijing.
[10] R. Sause, "Seismic Performance of a Self-Centering-Rocking Concentrically-Braced Frame", Journal of Structural Engineering, Vol. 140, 2010, pp. 121-132.
[11] M. R. Eatherton, and J. F. Hajjar, "Large-scale cyclic and hybrid simulation testing and development of a controlled-rocking steel building system with replaceable fuses", Newmark Structural Engineering Lab. University of Illinois at Urbana-Champaign, USA, 2010.
[12] X. Ma, "Seismic design and behavoir of self-centering braced Frame with controlled rocking and energy-dissipating fuses, blume earthq", Engineering Center TR, 174, University of Stanford, 2011.
[13] K. S. Hall, M. R. Eatherton, and J. F. Hajjar, "Nonlinear behavior of controlled rocking steel-framed building systems with replaceable energy dissipating fuses", Newmark Structural Engineering Laboratory. University of Illinois at Urbana-Champaign, USA, 2010.
[14] M. R. Eatherton, X. Ma, H. Krawinkler, D. Mar, S. Billington, J. F. Hajjar, and G. G. Deierlein, "Design Concepts for Controlled Rocking of Self-Centering Steel-Braced Frames", Journal of Structural Engineering, Vol. 140, 2014, pp. 121-132.
[15] L. Wiebe, and C. Christopoulos, "Mitigation of higher mode effects in base-rocking systems by using multiple rocking sections", Journal of Earth Engineering, Vol. 13, 2009, p.p. 83–108.
[16] L. Wiebe, C. Christopoulos, R. Tremblay, and M. Leclerc, "Mechanisms to limit higher mode effects in a controlled rocking steel frame. 1: Concept, modelling and low-amplitude shake table testing, Earth", Engineering Structural Dynamics, Vol. 42, 2013, p.p. 1053–1068.
[17] M. Khanmohammadi, and S. Heydari, "Seismic behavior improvement of reinforced concrete shear wall buildings using multiple rocking systems", Engineering Structural, Vol. 100, 2015, p.p. 577-589.
[18] M. Hosseini, M. Fekri, and M. Yekrangnia, "Seismic performance of an innovative structural system having seesaw motion and columns equipped with friction dampers at base level",The Structural Design of Tall and Special Buildings, Vol. 25, 2016, p.p. 842–865.
[19] A. Gupta, and H. Krawinkler, "Seismic demands for the performance evaluation of steel moment resisting frame structures", University of Stanford, California, USA, 1999.
[20] ASCE, American Society of Civil Engineers, "Minimum Design Loads for Buildings and Other Structuresc" SEI/ASCE 7-10, Reston, VA, 2010.
[21] ASTM, American Society for Testing and Materials International, Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete, ASTM Standard A416/A416M-06, West Conshohocken, PA, 2006.
[22] S. Mazzoni, F. McKenna, M. H. Scott, and G. L. Fenves, "OpenSees command language manual", Pacific Earthquake Engineering Research (PEER) Center, 2006.
[23] FEMA, Federal Emergency Management Agency, "Quantification of Building Seismic Performance Factors", FEMA P695, Washington, D.C, 2009.