] بخشنده امنیه, حسن, مختاری, هادی, حکیمیان, میثم, دهنوی, سعید، 1397. مدلسازی ریاضی زمانبندی فعالیتها با درنظرگرفتن هزینههای اضافهکاری و جریمهی دیرکرد برای استخراج بلوک معدن سنگ آهن چغارت. مدل سازی در مهندسی، 16(53)، 26-26.
.[2]شفیعی نیک آبادی، محسن, بهشتی نیا، محمدعلی، رفیعی پور, رضا، 1395. ارائه یک مدل ریاضی جهت بهینه سازی فرایند توسعه محصول. مدل سازی در مهندسی, 14(45), 111-121.
.[3] نادرپور, عباس, مفید, مسعود، 1388. بهینه سازی تخصیص منابع به فعالیت های پروژه با استفاده از مدل دیاگرام منابع بحرانی. مدل سازی در مهندسی, 5(19), 37-46.
.[4] حسامی, سعید, مولایی, زهرا، 1394. بهینه سازی زمانبندی در پروژه های راهسازی بر اساس تفکر ناب. مدل سازی در مهندسی, 13(40), 33-42.
[5]. Falk, J.E. and J.L. Horowitz, Critical path problems with concave cost-time curves. Management Science, 1972. 19(4-part-1): p. 446-455.
[6]. Harvey, R. T., & Patterson, J. H. 1979. An implicit enumeration algorithm for the time/cost tradeoff problem in project network analysis. Foundations of Control Engineering, 4, 107-117.
[7]. Kelley Jr, J.E., Critical-path planning and scheduling: Mathematical basis. Operations Research, 1961. 9(3): p. 296-320.
[8]. Robinson, D.R., A dynamic programming solution to cost-time tradeoff for CPM. Management Science, 1975. 22(2): p. 158-166.
[9]. Reda, R. and R.I. Carr, Time-cost trade-off among related activities. Journal of Construction Engineering and Management, 1989. 115(3): p. 475-486.
[10]. Vrat, P. and C. Kriengkrairut, A goal programming model for project crashing with piecewise linear time-cost trade-off. Engineering costs and production economics, 1986. 10(2): p. 161-172.
[11]. Erenguc, S.S., S. Tufekci, and C.J. Zappe, Solving time/cost trade‐off problems with discounted cash flows using generalized benders decomposition. Naval Research Logistics (NRL), 1993. 40(1): p. 25-50.
[12] Zheng, H., 2017, July. A Discrete Time-Cost-Environment Trade-Off Problem with Multiple Projects: The Jinping-I Hydroelectric Station Project. In International Conference on Management Science and Engineering Management (p. 1709-1721). Springer, Cham.
[13]. Xu, J., et al., Discrete time–cost–environment trade-off problem for large-scale construction systems with multiple modes under fuzzy uncertainty and its application to Jinping-II Hydroelectric Project. International Journal of Project Management, 2012. 30(8): p. 950-966.
[14]. Marzouk, M., et al., Handling construction pollutions using multi‐objective optimization. Construction Management and Economics, 2008. 26(10): p. 1113-1125.
[15]. Ozcan-Deniz, G., Y. Zhu, and V. Ceron, Time, cost, and environmental impact analysis on construction operation optimization using genetic algorithms. Journal of Management in Engineering, 2011. 28(3): p. 265-272.
[16]. Liu, S., R. Tao, and C.M. Tam, Optimizing cost and CO< sub> 2 emission for construction projects using particle swarm optimization. Habitat International, 2013. 37: p. 155-162.
[17]. Cheng, M.-Y. and D.-H. Tran, Opposition-Based Multiple-Objective Differential Evolution to Solve the Time–Cost–Environment Impact Trade-Off Problem in Construction Projects. Journal of Computing in Civil Engineering, 2014.
[18]. آذر, ع. و س. موسوی, طراحی مدل احتمالی و استوار یکپارچه سه مرحله ای برای انتخاب تامین کننده با رویکرد عدم قطعیت. تحقیق در عملیات در کاربردهای آن 1393. 1(40): 1-18.
[19]. Soyster, A.L., 1973. Technical note—convex programming with set-inclusive constraints and applications to inexact linear programming. Operations research, 21(5): p. 1154-1157.
[20]. Ben-Tal, A. and A. Nemirovski, 1998. Robust convex optimization. Mathematics of Operations Research, 23(4): p. 769-805.
[21]. Ben-Tal, A. and A. Nemirovski, 1999. Robust solutions of uncertain linear programs. Operations research letters, 25(1): p. 1-13.
[22]. Ben-Tal, A. and A. Nemirovski, 2000. Robust solutions of linear programming problems contaminated with uncertain data. Mathematical programming, 88(3): p.411-424 .
[23]. Bertsimas, D. and M. Sim, 2004. The price of robustness. Operations research, 52(1): p. 35-53.
[24]. Cohen, I., B. Golany, and A. Shtub, 2007. The stochastic time–cost tradeoff problem: a robust optimization approach. Networks, 49(2): p. 175-18.
[25]. Ben-Tal, A., et al., Adjustable robust solutions of uncertain linear programs. Mathematical Programming, 2004. 99(2): p. 351-376.
[26]. Hazir, O., E. Erel, and Y. Günalay, 2011, Robust optimization models for the discrete time/cost trade-off problem. International Journal of Production Economics, 130(1): p. 87-95.
[27]. Hindelang, T. J., & Muth, J. F. 1979. A dynamic programming algorithm for decision CPM networks. Operations Research, 27, 225-241
[28]. Demeulemeester, E. L., Herroelen, W. S., & Elmaghraby, S. E. 1996. Optimal procedures for the discrete time/cost trade-off problem in project networks. European Journal of Operational Research, 88, 50-68.
[29]. Gutjahr, W. J., Strauss, C., & Wagner, E. 2000. A stochastic branch-and-bound approach to activity crashing in project management. INFORMS Journal on Computing, 12, 125-13.
[30]. Jin, C., Ji, Z., Lin, Y., Zhao, Y., & Huang, Z. 2005. Research on the fully fuzzy time-cost trade-off based on genetic algorithms. Journal of Marine Science and Application, 4, 18–23.
[31]. Yang, I.-T. 2005. Impact of budget uncertainty on project time-cost tradeoff. Engineering Management, IEEE Transactions on, 52, 167-174.
[32]. Eshtehardian, E., Afshar, A., & Abbasnia, R. 2009. Fuzzy-based MOGA approach to stochastic time–cost trade-off problem. Automation in Construction, 18, 692-701.
[33]. Ghazanfari, M., Yousefli, A., Ameli, M. S. J., & Bozorgi-Amiri, A. (2009). A new approach to solve time-cost trade-off problem with fuzzy decision variables. The International Journal of Advanced Manufacturing Technology, 42, 408–414.
[34]. Hazir, O., Haouari, M., & Erel, E. 2010. Discrete time/cost trade-off problem: A decomposition-based solution algorithm for the budget version. Computers & Operations Research, 37, 649-655.
[35]. Hazir, O., Haouari, M., & Erel, E. 2010. Robust scheduling and robustness measures for the discrete time/cost trade-off problem. European Journal of Operational Research, 207, 633-643.
[36]. Ke, H. 2014. A genetic algorithm-based optimizing approach for project time-cost trade-off with uncertain measure. Journal of Uncertainty Analysis and Applications, 2, 8.
[37]. Ke, H., Ma, W., Gao, X., & Xu, W. 2010. New fuzzy models for time-cost trade-off problem. Fuzzy Optimization and Decision Making, 9, 219-231.
[38]. Ke, H., Ma, W., & Chen, X. 2012. Modeling stochastic project time–cost trade-offs with time-dependent activity durations. Applied Mathematics and Computation, 218, 9462-9469.
[39]. Klerides, E., & Hadjiconstantinou, E. 2010. A decomposition-based stochastic programming approach for the project scheduling problem under time/cost trade-off settings and uncertain durations. Computers & Operations Research, 37, 2131-2140.
[40]. Mokhtari, H., Baradaran Kazemzadeh, R., & Salmasnia, A. 2011. Time-cost tradeoff analysis in project management: An ant system approach. Engineering Management, IEEE Transactions on, 58(1), 36-43.
[41]. Zheng, H., Mei, H., Nie, M. and Xiong, Y., 2016. A discrete time-cost-environment trade-off problem with multiple projects: the Jinping-II Hydroelectric Station large-scale deeply buried tunnel group project. International Journal of Manufacturing Technology and Management, 30(5), pp.326-345.
[42]. Feng, K., Lu, W., Chen, S. and Wang, Y., 2018. An Integrated Environment–Cost–Time Optimisation Method for Construction Contractors Considering Global Warming. Sustainability, 10(11), p.4207.
[43]. Meyer, W. L., & Shaffer, L. R. 1963. Extensions of the critical path method through the application of integer programming, Department of Civil Engineering, University of Illinois.
[44]. Crowston, W. B. 1970. Decision CPM: Network reduction and solution. Operational Research Quarterly, 435-452.