Prediction of surface tension of ionic liquid based on imidazolium using artificial neural network

Document Type : Chemistry Article

Author

School of Chemical Engineering, Enhanced Oil Recovery and Gas Processing Lab, Babol Noshirvani University of Technology, Babol, Iran

Abstract

Nowadays, with the progresses in technology to solve problems where there is no exact mathematical relationship between input and output, neural networks are efficiently proposed and used. In the shadow of its unique features, in this study, two multilayer perceptron neural networks including feedforward artificial neural network (FFANN) and cascade artificial neural network (CANN) were proposed to predict the surface tension of imidazolium-based ionic liquids. To verify the validity of the proposed models, 1251 experimental data points were collected from various previously published literature including the surface tension of 40 ionic liquids in a wide range of temperatures (from 263.61 to 533.2 K). The results showed that the proposed CANN consists of three inputs including molecular weights of anionic and cationic part of ionic liquid and temperature with a hidden layer containing 8 neurons with a hyperbolic tangent activation function and trained with Levenberg–Marquardt algorithm has the best correlative capability for surface tension of ionic liquids. In addition, error analysis of test data set with an average absolute relative deviation percent of 1.07 indicates the appropriate performance of the nonlinear CANN model in the linking between network inputs and surface tensions. Also, comparing the accuracy of the proposed model with existing models, including the corresponding states principle, Parachor, the group method of data handling (GMDH) and the model based on least-squared supported vector machine (LSSVM) indicate the superiority of the proposed model.

Keywords

Main Subjects


 
[1] H.Y. Erbil, Solid and liquid interfaces, Blackwell Publishing, Oxford, 2006.
[2] M. Lashkarbolooki, "Artificial neural network modeling for prediction of binary surface tension containing ionic liquid", Separation Science and Technology, Vol. 52, No. 8 , 2017, pp. 1454-1467.
[3] S. Sastri and K. Rao, "A simple method to predict surface tension of organic liquids", The Chemical Engineering Journal and the Biochemical Engineering Journal, Vol. 59, No. 2, 1995, pp. 181-186.
[4] T.A. Knotts, W.V. Wilding, J.L. Oscarson and R.L. Rowley, "Use of the DIPPR database for development of QSPR correlations: Surface tension", Journal of Chemical & Engineering Data, Vol. 46, No. 5, 2001, pp. 1007-1012.
[5] J.W. Cahn and J.E. Hilliard, "Free energy of a nonuniform system. I. Interfacial free energy", The Journal of chemical physics, Vol. 28, No. 2, 1958, pp. 258-267.
[6] C. Miqueu, J.M. Míguez, M.M. Pineiro, T. Lafitte and B. Mendiboure, "Simultaneous application of the gradient theory and Monte Carlo molecular simulation for the investigation of methane/water interfacial properties", The Journal of Physical Chemistry B, Vol. 115, No. 31, 2011, pp. 9618-9625.
[7] M. Mousazadeh and E. Faramarzi, "Corresponding states theory for the prediction of surface tension of ionic liquids", Ionics, Vol. 17, No. 3, 2011, pp. 217-222.
[8] S. Atashrouz, E. Amini and G. Pazuki, "Modeling of surface tension for ionic liquids using group method of data handling", Ionics, Vol. 21, No. 6, 2015, pp. 1595-1603.
[9] K.-J. Wu, C.-X. Zhao and C.-H. He, "A simple corresponding-states group-contribution method for estimating surface tension of ionic liquids", Fluid Phase Equilibria, Vol. 328, 2012, pp. 42-48.
[10] حسین قنادزاده گیلانی، الهیار داغبندان، محمد اکبری زاده و میثم آزادیان، "مدل سازی سیستم های تعادلی بخار- مایع و مایع - مایع با استفاده از مدل های ترمودینامیکی، ساختارهای فازی و شبکه های عصبی نوع GMDH"، مدل سازی در مهندسی، دوره 16،شماره 55، زمستان 1397، صفحه 2-2.
[11] علی حیدری، داوود توکلی و پویان فخاریان "تقریب مقادیر ویژه ورق با استفاده از شبکه عصبی مصنوعی"، مدل سازی در مهندسی، دوره 11، شماره 35، زمستان 1392، صفحه 49-62.
[12] مرضیه حسن آبادی، عبدالحسین حداد و حسین نادرپور، "استفاده از شبکه های عصبی مصنوعی در تخمین ظرفیت باربری شالوده های سطحی واقع بر بسترهای چند لایه چسبنده"، مدل سازی در مهندسی، دوره 9، شماره 24، بهار 1390، صفحه 65-83.
[13] علیرضا مرتضایی و علی خیرالدین، "مدل سازی و تخمین طول مفصل پلاستیک ستون های بتن آرمه به کمک شبکه های عصبی مصنوعی"، مدل سازی در مهندسی، دوره 10، شماره 29، تابستان 1391، صفحه 1-17.
[14] عیسی خواجه‌وندی،نیما امجدی و محمد حسین ولایتی، "پیش‌بینی وضعیت بهره‌برداری سیستم قدرت با در نظر گرفتن حد راکتیو ژنراتورها و حد دینامیکی پایداری ولتاژ با استفاده از شبکه عصبی"، مدل سازی در مهندسی، دوره 15،شماره 51، زمستان 1396، صفحه 341-350.
[15] M. Lashkarbolooki and M. Bayat, "Prediction of surface tension of liquid normal alkanes, 1-alkenes and cycloalkane using neural network", Chemical Engineering Research and Design, Vol. 137, 2018, pp. 154-163.
[16] S. Atashrouz, H. Mirshekar and A. Mohaddespour, "A robust modeling approach to predict the surface tension of ionic liquids", Journal of Molecular Liquids, Vol. 236, 2017, pp. 344-357.
[17] M. Součková, J. Klomfar and J. Pátek, "Surface tension and 0.1 MPa densities of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based tris (pentafluoroethyl) trifluorophosphate ionic liquids", Fluid Phase Equilibria, Vol. 333, 2012, pp. 38-46.
[18] M. Tariq, A.P. Serro, J.L. Mata, B. Saramago, J.M. Esperança, J.N.C. Lopes and L.P.N. Rebelo, "High-temperature surface tension and density measurements of 1-alkyl-3-methylimidazolium bistriflamide ionic liquids", Fluid Phase Equilibria, Vol. 294, No. 1-2, 2010, pp. 131-138.
[19] J. Klomfar, M. Součková and J. Pátek, "Surface tension measurements with validated accuracy for four 1-alkyl-3-methylimidazolium based ionic liquids", The Journal of Chemical Thermodynamics, Vol. 42, No. 3, 2010, pp. 323-329.
[20] P.J. Carvalho, C.M. Neves and J.A. Coutinho, "Surface tensions of bis (trifluoromethylsulfonyl) imide anion-based ionic liquids", Journal of Chemical & Engineering Data, Vol. 55, No. 9, 2010, pp. 3807-3812.
[21] P.J. Carvalho, M.G. Freire, I.M. Marrucho, A.J. Queimada and J.A. Coutinho, "Surface tensions for the 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquids", Vol. 53, No. 6, 2008, pp 1346-1350.
[22]  M.H. Ghatee and A.R. Zolghadr, "Surface tension measurements of imidazolium-based ionic liquids at liquid–vapor equilibrium", Fluid Phase Equilibria, Vol. 263, No. 2, 2008, pp. 168-175.
[23] M. Součková, J. Klomfar and J. Pátek, "Temperature dependence of the surface tension and 0.1 MPa density for 1-C n-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate with n= 2, 4, and 6", The Journal of Chemical Thermodynamics, Vol. 48, 2012, pp. 267-275.
[24] H.F. Almeida, P.J. Carvalho, K.A. Kurnia, J.A. Lopes-da-Silva, J.A. Coutinho and M.G. Freire, "Surface tensions of ionic liquids: Non-regular trend along the number of cyano groups", Fluid phase equilibria, Vol. 409, 2016, pp. 458-465.
[25] M. Součková, J. Klomfar and J. Pátek, "Surface tension of 1-alkyl-3-methylimidazolium based ionic liquids with trifluoromethanesulfonate and tetrafluoroborate anion", Fluid Phase Equilibria, Vol. 303, No. 2, 2011, pp. 184-190.
[26] L.G. Sanchez, J.R. Espel, F. Onink, G.W. Meindersma and A.B.d. Haan, "Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids", Journal of Chemical & Engineering Data, Vol. 54, No. 10, 2009, pp. 2803-2812.
[27] M. Součková, J. Klomfar and J. Pátek, "Surface tension and 0.1 MPa density of 1-alkyl-3-methylimidazolium tetrafluoroborates in a homologous series perspective", The Journal of Chemical Thermodynamics, Vol. 100, 2016, pp. 79-88.
[28] M. Součková, J. Klomfar and J. Pátek, "Surface tension and 0.1 MPa density data for 1-Cn-3-methylimidazolium iodides with n= 3, 4, and 6, validated using a parachor and group contribution model", The Journal of Chemical Thermodynamics, Vol. 83, 2015, pp. 52-60.
[29] K.A. Kurnia, M.A. Mutalib, Z. Man and M.A. Bustam, "Density and Surface Tension of Ionic Liquids [H2N–C2mim][PF6] and [H2N–C3mim][PF6]", Journal of Chemical & Engineering Data, Vol. 57, No. 11, 2012, pp. 2923-2927.
[30] J. Klomfar, M. Součková and J. Pátek, "Temperature dependence of the surface tension and density at 0.1 MPa for 1-ethyl-and 1-butyl-3-methylimidazolium dicyanamide", Journal of Chemical & Engineering Data, Vol. 56, No. 8, 2011, pp. 3454-3462.
[31] J. Klomfar, M. Součková and J. Pátek, "Group contribution and parachor analysis of experimental data on densities and surface tension for six ionic liquids with the [PF 6] anion", Fluid Phase Equilibria, Vol. 385, 2015, pp. 62-71.
[32] Q.-S. Liu, J. Tong, Z.-C. Tan, U. Welz-Biermann and J.-Z. Yang, "Density and surface tension of ionic liquid [C2mim][PF3 (CF2CF3) 3] and prediction of properties [C n mim][PF3 (CF2CF3) 3](n =1,3,4,5,6)", Journal of Chemical & Engineering Data, Vol. 55, No. 7, 2010, pp. 2586-2589.
[33] H.F. Almeida, A.R.R. Teles, J.A. Lopes-da-Silva, M.G. Freire and J.A. Coutinho, "Influence of the anion on the surface tension of 1-ethyl-3-methylimidazolium-based ionic liquids", The Journal of Chemical Thermodynamics, Vol. 54, 2012, pp. 49-54.
[34] P. Kilaru, G.A. Baker and P. Scovazzo, "Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids: data and correlations", Journal of Chemical & Engineering Data, Vol. 52, No. 6, 2007, pp. 2306-2314.
[35] M.G. Freire, P.J. Carvalho, A.M. Fernandes, I.M. Marrucho, A.J. Queimada and J.A. Coutinho, "Surface tensions of imidazolium based ionic liquids: Anion, cation, temperature and water effect", Journal of Colloid and Interface Science, Vol. 314, No. 2, 2007, pp. 621-630.
[36] J. Klomfar, M. Součková and J. Pátek, "Surface tension measurements for four 1-alkyl-3-methylimidazolium-based ionic liquids with hexafluorophosphate anion", Journal of Chemical & Engineering Data, Vol. 54, No. 4, 2009, pp. 1389-1394.
[37] M. Lashkarbolooki, B. Vaferi and D. Mowla, "Using artificial neural network to predict the pressure drop in a rotating packed bed", Separation Science and Technology, Vol. 47, No. 16, 2012, pp. 2450-2459.
[38] M. Lashkarbolooki, A.Z. Hezave and S. Ayatollahi, "Artificial neural network as an applicable tool to predict the binary heat capacity of mixtures containing ionic liquids", Fluid Phase Equilibria, Vol. 324, No. 2012, pp. 102-107.
[39] M.G. Freire, P.J. Carvalho, A.M. Fernandes, I.M. Marrucho, A.J. Queimada and J.A. Coutinho, "Surface tensions of imidazolium based ionic liquids: Anion, cation, temperature and water effect", Journal of Colloid and Interface Science, Vol. 314, No. 2, 2007, pp. 621-630.
[40] M.G. Freire, P.J. Carvalho, A.M. Fernandes, I.M. Marrucho, A.J. Queimada and J.A. Coutinho, "Surface tensions of imidazolium based ionic liquids: Anion, cation, temperature and water effect", Journal of Colloid and Interface Science, Vol. 314, No. 2, 2007, pp. 621-630.
[41] M. Deetlefs, C. Hardacre, M. Nieuwenhuyzen, A.A. Padua, O. Sheppard and A.K. Soper, "Liquid structure of the ionic liquid 1, 3-dimethylimidazolium bis {(trifluoromethyl) sulfonyl} amide", The Journal of Physical Chemistry B, Vol. 110, No. 24, 2006, pp. 12055-12061.
[42] A. Wandschneider, J.K. Lehmann and A. Heintz, "Surface tension and density of pure ionic liquids and some binary mixtures with 1-propanol and 1-butanol", Journal of Chemical & Engineering Data, Vol. 53, No. 2, 2008, pp. 596-599.
[43] P.J. Carvalho, M.G. Freire, I.M. Marrucho, A.J. Queimada and J.A. Coutinho, "Surface tensions for the 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquids", J. Chem. Eng. Data Vol. 53, No. 6, 2008, pp. 1346-1350.
[44] M. Shamsipur, A.A.M. Beigi, M. Teymouri, S.M. Pourmortazavi and M. Irandoust, "Physical and electrochemical properties of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide", Journal of Molecular Liquids, Vol. 157, No. 1, 2010, pp. 43-50.
[45] W.-G. Xu, L. Li, X.-X. Ma, J. Wei, W.-B. Duan, W. Guan and J.-Z. Yang, "Density, surface tension, and refractive index of ionic liquids homologue of 1-alkyl-3-methylimidazolium tetrafluoroborate [C n mim][BF4](n= 2, 3, 4, 5, 6)", Journal of Chemical & Engineering Data, Vol. 57, No. 8, 2012, pp. 2177-2184.
[46] A. Muhammad, M.A. Mutalib, C. Wilfred, T. Murugesan and A. Shafeeq, "Thermophysical properties of 1-hexyl-3-methyl imidazolium based ionic liquids with tetrafluoroborate, hexafluorophosphate and bis (trifluoromethylsulfonyl) imide anions", The Journal of Chemical Thermodynamics, Vol. 40, No. 9, 2008, pp. 1433-1438.
[47] A.B. Pereiro, P. Verdía, E. Tojo and A. Rodríguez, "Physical properties of 1-butyl-3-methylimidazolium methyl sulfate as a function of temperature", Journal of Chemical & Engineering Data, Vol. 52, No. 2, 2007, pp. 377-380.