new feature selection method by a semi supervised classification algorithm for time series estimation

Document Type : Computer Article


1 Department of Computer, Faculty of Sience, Graduate University of , Kerman, Iran;R.Mohammadi

2 Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran;


In this research, 12 approaches were proposed to create an optimal vector based on supporting vector machine and neural networks based on genetic algorithm, cuckoo and particle swarm Optimization (PSO). In this regard, we have tried to design a system that reduces the cost of data collection. For this purpose, three data sets with time series capability of standard UCI data were used in this study. The results of the approaches used in this research show the good performance of all the used algorithms. However, the ability and performance of each approach vary according to the type and nature of the data. This has sometimes led to better results from the MLP neural network and the GA or Cuckoo algorithm, and in some cases, the PSO algorithm has better outcomes. Regarding the results, it can be said that the use of feature selection based on semi-regulatory classification reduces system error, increases the accuracy and increases the speed of time series estimation. Hence, by using the efficient and powerful MLP Neural Network and backup vector machine along with the optimization algorithm and metamorphic, an optimal combination classification system can be designed for time series estimation.


Main Subjects

[1] حسینعلی نیرومند، ابوالقاسم بزرگ نیا، مقدمهای بر تحلیل سریهای زمانی )ترجمه( ) The Analysis Of Time Series An Introduction, C. Chatfield ( / تألیف سی چتفیلد؛ )انتشارات دانشگاه مشهد؛ ISBN 964-5782-88-0132 ،) 1389 .
[2] محمد ناظری تهرودی، "مقایسه مدلهای PAR و MPAR در مدلسازی سری زمانی ماهانه دبی رودخانه تحت تأثیر عوامل
هواشناسی"، مجله مدلسازی در مهندسی، دوره 16 ، شماره 52 ، 1397 ، صفحه 183 - 191 .
[3] شیرین پیران، علیرضا برهانی داریان، "انتخاب هوشمند ورودیها با استفاده از الگوریتم ژنتیک باینری در شبکهی عصبی تکاملی"،
چهارمین کنگره بین المللی عمران، معماری و توسعه شهری، 1395 .
[4] N. Muttil, & K.W. Chau, "Machine-learning paradigms for selecting ecologically significant input variables", Engineering Applications of Artificial Intelligence, Vol. 20, No. 6, 2007, pp. 735–744.
[5] A.R. Yildiz, "Cuckoo search algorithm for the selection of optimal machining parameters in milling operations", The International Journal of Advanced Manufacturing Technology, Vol. 64, Nos. 1–4, 2013, pp. 55–61.
[6] S. Galelli, G.B. Humphrey, H.R. Maier, A. Castelletti, G.C. Dandy, & M.S. Gibbs, "An evaluation framework for input variable selection algorithms for environmental data-driven models", Environmental Modelling & Software, Vol. 62, 2014, pp. 33–51.
[7] M. Dash, H. Liu, "Feature selection for classification", Intelligent Data Analysis, Vol. 1, No. 3, 1997, pp. 131–156.
[8] P.J. Brockwell, R.A. Davis, Introduction to Time Series and Forecasting, 2nd edition, Springer, New York, 2002.
[9] H. Liu, H. Motoda, Feature Extraction, Construction, and Selection: A Data Mining Perspective, Kluwer
[10] J. Neter, M.H. Kutner, C.J. Nachtsheim, L. Wasserman, Applied Linear Statistical Models, 4th edition, Irwin, 1996.
[11] R. Rajabioun, "Cuckoo Optimization Algorithm", Applied Soft Computing, Vol.11, No.8, 2011, pp. 5508–5518.