Comprehensive Modeling of Transient Analysis of Grounding System under Lightning Surges

Document Type : Power Article

Authors

Department of Electrical and Computer Eng. , University of Birjand, Birjand, Iran

Abstract

During lightning discharge, the transient performance of grounding system is influenced by the time-dependent nonlinear behavior related to soil ionization and frequency dependence of soil electrical parameters related to high-frequency spectrum of lightning current. In this paper, for the modeling of grounding system, a new approach based on the combination of the method of moment (MoM) and the harmonic balance method (HBM) has been used. In order to increase the accuracy, the phenomenon of soil ionization in the time domain and the effects of frequency dependence of soil electrical parameters in the frequency domain are considered simultaneously in the modeling. In the presented method, first by analyzing the ground system through solving integral equations with the method of moment (MoM), a Norton’s equivalent circuit is extracted in frequency domain assuming frequency dependent of soil electrical parameters. At this stage, the equivalent circuit is extracted in the absence of soil ionization. Then, by adding the nonlinear load arising from soil ionization to the Norton’s equivalent circuit, the grounding system is changed into a nonlinear Norton’s equivalent circuit. To analyze the obtained nonlinear circuit, the harmonic balance method (HBM) is used. The proposed model is validated by comparing our data with published experimental results. The obtained results confirm efficiency and accuracy of the proposed method.

Keywords


[ 1 [ حسین پرهیزکار و حسین شایقی، " مدلسازی خطوط انتقال تحریک شده بر اثر اصابت صاعقه در حوزه فرکانس"، نشریه مدلسازی
در مهندسی، دوره 15 ، شماره 50 ، پاییز 1396 ، صفحه 237 - 244 .
[2] "Guide on Lightning Protection of MV and LV Networks: Part I Common Topics", CIGRÉ Working Group C4.4.02 (Protection of MV and LV networks against lightning) of Study Committee C4, Paris, France, Feb. 2006.
[3] L.A. Choy and M. Darveniza, "A Sensitivity Analysis of Lightning Performance Calculations for Transmission Lines", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-90, No. 4, July 1971, pp. 1443–1451.
[4] IEEE Guide for Safety in AC Substation Grounding," IEEE Std 80–2000, Aug. 2000, pp. 1–192.
[5] IEEE Recommended Practice for Grounding of Industrial and Commercial Power Systems (IEEE Green Book)," in ANSI/IEEE Std 142–1982, Sept. 1982, pp.1–135.
[ 6 [ زهرا مروج و جواد آذرخش، " شبیه سازی و طبقه بندی وقایع کیفیت توان با استفاده از شبکه عصبی"، نشریه مدلسازی در مهندسی،
دوره 13 ، شماره 41 ، تابستان 1394 ، صفحه 137 - 146 .
[7] B. Zhang, J. Wu, J. He and R. Zeng, "Analysis of Transient Performance of Grounding System Considering Soil Ionization by Time Domain Method," IEEE Transactions on Magnetics, Vol. 49, No. 5, May 2013, pp. 1837–1840.
[8] S. Visacro, "A Comprehensive Approach to the Grounding Response to Lightning Currents," IEEE Transactions on Power Delivery, Vol. 22, No. 1, Jan. 2007, pp. 381–386.
[9] V.A. Rakov and M.A. Uman, "Lightning: physics and effects. Cambridge University Press", Aug 2003, p. 600.
[10] L.D. Grcev and M. Heimbach, "Frequency dependent and transient characteristics of substation grounding systems", IEEE Transactions on Power Delivery, Vol. 12, No. 1, Jan. 1997, pp. 172–178.
[11] M.R. Alemi and K. Sheshyekani, "Wide-Band Modeling of Tower-Footing Grounding Systems for the Evaluation of Lightning Performance of Transmission Lines", IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 6, Dec. 2015, pp. 1627–1636.
176 مدلسازی جامع سیستم زمین جهت تحلیل رفتار گذرای آن در مقابل ضربات صاعقه
مجله مدل سازی در مهندسی سال هفدهم، شماره 59 ، زمستان 1398
[13] J. Wang, A.C. Liew and M. Darveniza, "Extension of dynamic model of impulse behavior of concentrated grounds at high currents", IEEE Transactions on Power Delivery, Vol. 20, No. 3, July 2005, pp. 2160–2165.
[14] M.E. Almeida and M.T. Correia De Barros, "Accurate modelling of rod driven tower footing", IEEE Transactions on Power Delivery, Vol. 11, No. 3, July 1996, pp. 1606–1609.
[15] Y. Liu, N. Theethayi, R. Thottappillil, RM. Gonzalez and M. Zitnik, "An improved model for soil ionization around grounding system and its application to stratified soil", Journal of Electrostatics, Vol. 60, No.2-4, Mar 2004, pp.203–209.
[16] S. Visacro, R. Alipio, M. H. Murta Vale, and C. Pereira, "The response of grounding electrodes to lightning currents: The effect of frequencydependent soil resistivity and permittivity", IEEE Transactions on Electromagnetic Compatibility, May 2011, Vol. 53, No. 2, pp. 401–406.
[17] D. Cavka, N. Mora, and F. Rachidi, "A comparison of frequencydependent soil models: Application to the analysis of grounding systems", IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 1, Feb. 2014, pp. 177–187.
[18] L. Grcev, "Modeling of Grounding Electrodes under Lightning Currents", IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 3, Aug. 2009, pp. 559–571.
[19] M. Ramamoorty, M.M.B. Narayanan, S. Parameswaran and D. Mukhedkar, "Transient performance of grounding grids", IEEE Transactions on Power Delivery, Vol. 4, No. 4, Oct. 1989, pp. 2053–2059.
[20] Yaqing Liu, M. Zitnik and R. Thottappillil, "An improved transmission-line model of grounding system", IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 3, Aug. 2001, pp. 348–355.
[21] O. Kherif, S. Chiheb, M. Teguar, A. Mekhaldi and N. Harid, "Time-Domain Modeling of Grounding Systems’ Impulse Response Incorporating Nonlinear and Frequency-Dependent Aspects", IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 4, Aug. 2018, pp. 907–916.
[22] L. Grcev and F. Dawalibi, "An electromagnetic model for transients in grounding systems", IEEE Transactions on Power Delivery, Vol. 5, No. 4, Oct. 1990, pp. 1773–1781.
[23] L. Grcev and M. Popov, "On high-frequency circuit equivalents of a vertical ground rod", IEEE Transactions on Power Delivery, Vol. 20, No. 2, April 2005, pp. 1598–1603.
[24] L.D. Grcev and F.E. Menter, "Transient electromagnetic fields near large earthing systems," IEEE Transactions on Magnetics, Vol. 32, No. 3, May 1996, pp. 1525–1528.
[25] Bo Zhang et al., "Numerical analysis of transient performance of grounding systems considering soil ionization by coupling moment method with circuit theory", IEEE Transactions on Magnetics, Vol. 41, No. 5, May 2005, pp. 1440–1443.
[26] K. Sheshyekani, SH. Sadeghi, R. Moini and F. Rachidi, "Frequency-domain analysis of ground electrodes buried in an ionized soil when subjected to surge currents: A MoM–AOM approach", Electric Power Systems Research, Vol. 81, No. 2, Feb 2011 1, pp. 290–296.
[27] B. Zhang, J. He, R. Zeng and S. Chen, "Effect of Grounding System on Electromagnetic Fields around Building Struck by Lightning", IEEE Transactions on Magnetics, Vol. 46, No. 8, Aug. 2010, pp. 2955-2958.
[28] J. Li, T. Yuan, Q. Yang, W. Sima, C. Sun and M. Zahn, "Numerical and Experimental Investigation of Grounding Electrode Impulse-Current Dispersal Regularity Considering the Transient Ionization Phenomenon", IEEE Transactions on Power Delivery, Vol. 26, No. 4, Oct. 2011, pp. 2647–2658.
[29] J. Gholinezhad and R. Shariatinasab, "Interfacing electromagnetic model of tower-footing impedance with the EMTP software package", International Journal of Electrical Power & Energy Systems, Vol. 105, Feb 2019, pp. 394–403.
[ 30 [ فریدالدین صفایی، نبی اله رمضانی و میلاد نیاز آذری، "ارزیابی و پیشبینی اثرات اضافه ولتاژهای ناشی از صاعقه بر روی شبکههای
توزیع پیچیده با مدلسازی فرکانس بالا اجزای آن"، نشریه مدلسازی در مهندسی، دوره 16 ، شماره 53 ، تابستان 1397 ، صفحه 243 -
258 .
[31] R. Zeng, X. Gong, J. He, B. Zhang and Y. Gao, "Lightning Impulse Performances of Grounding Grids for Substations Considering Soil Ionization", IEEE Transactions on Power Delivery, Vol. 23, No. 2, April 2008, pp. 667–675.
غیور صفار و شریعتی نسب 177
مجله مدل سازی در مهندسی سال هفدهم، شماره 59 ، زمستان 1398
[32] J. Wu, B. Zhang, J. He and R. Zeng, "A Comprehensive Approach for Transient Performance of Grounding System in the Time Domain", IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 2, April 2015, pp. 250–256.
[33] K. Sheshyekani, S.H.H. Sadeghi and R. Moini, "A Combined MoM-AOM Approach for Frequency Domain Analysis of Nonlinearly Loaded Antennas in the Presence of a Lossy Ground", IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, June 2008, pp. 1717–1724.
[34] C.C. Huang and T.H. Chu, "Analysis of wire scatterers with nonlinear or time-harmonic loads in the frequency domain", IEEE Transactions on Antennas and Propagation, Vol. 41, No. 1, Jan. 1993, pp. 25–30.
[35] F.P. Hart, D.G. Stephenson, C.R. Chang, K. Gharaibeh, R.G. Johnson and M.B. Steer, "Mathematical foundations of frequency-domain modeling of nonlinear circuits and systems using the arithmetic operator method", International Journal of RF and Microwave Computer-Aided Engineering: Co-sponsored by the Center for Advanced Manufacturing and Packaging of Microwave, Optical, and Digital Electronics (CAMPmode) at the University of Colorado at Boulder, Vol.13, No. 6, 2003. pp. 473–495.
[36] S.A. Maas, Nonlinear microwave and RF circuits, Artech House, 2003.
[37] G.B. Sorkin, K.S. Kundert and A. Sangiovanni-Vincentelli, "An Almost-Periodic Fourier Transform for Use with Harmonic Balance", IEEE MTT-S International Microwave Symposium Digest, Palo Alto, CA, USA, 1987, pp. 717–720.
[38] C.L. Longmire, and K.S. Smith, "A universal impedance for soils", Mission Research Corp., Santa Barbara, CA, Rep. DNA3788T, Oct. 1975.
[39] A.C. Liew and M. Darveniza, "Dynamic model of impulse characteristics of concentrated earths", Proceedings of the Institution of Electrical Engineers, Vol. 121, No. 2, February 1974, pp. 123–135.
[40] F. Heidler, J.M. Cvetic and B.V. Stanic, "Calculation of lightning current parameters", IEEE Transactions on Power Delivery, Vol. 14, No. 2, April 1999, pp. 399–404.