Optimization of large tunnels excavation method based on numerical investigation

Document Type : Mining Engineering Article

Author

Mining engineering- High education center of shahid bakeri- Urmia university

Abstract

The increasing demand for tunnels as a critical component of the transportation system has caused to establish large face tunnels. In excavation method optimization, it is important to define the number and size of sections. In the presented paper, the distinct element method used to simulate and determine the sequential pattern in the excavation of large face tunnels. The objective function was to minimize the shear strains and extensive displacements of surface and tunnel arch. Therefore 83 different models simulated and implemented to analyze the results. The main variable in presented models is the heading section height in the top heading and benching excavation method. The case study is a binary tunnel with a diagonal pattern. The lower tunnel is with a circular cross-section with 13.7m in diameter. The upper tunnel has a D cross section of 13.2m width and 13.7m height. The tunnels distance is 33m. By verification and implementation of models, the results show that by increasing the heading section height, the displacement has a growing trend. The main point of the result return to the optimum height of the heading section, which is 0.45% and 0.55% of the diameter of circular and height of D shape tunnels, respectively. In these percentage, the growing trend of displacement has a reverse manner.

Keywords


[1] G. Barla, "Full-face excavation of large tunnels in difficult conditions", Journal of Rock Mechanics and Geotechnical Engineering, Vol. 8, No.3, June 2016, pp. 294–303.
[2] F. Zhang, Y.F. Gao, Y.X. Wu, N. Zhang, "Upper-bound solutions for face stability of circular tunnels in undrained clays", Geotechnique journal, Vol. 10, No.1, August 2018, pp. 76–85.
[3] P. Lunardi, G. Barla, "Full face excavation in difficult ground", Geomechanics and Tunneling, Vol.7, No. 5, October 2014, pp. 461–468.
[4] R. Tatiya, Surface and underground excavations, Methods, Techniques and Equipment, 2th ed., Taylor and Francis Group, Elsevier, USA, 2005.
[5] B. Zhang, X. Wang, J.S. Zhang, F. Meng, "Three-dimensional limit analysis of seismic stability of tunnel faces with quasi-static method", Geomech. Eng, Vol. 22, No. 9, August 2017, pp. 301–318.
[6] K.H. Bowers, "An Appraisal of the New Austrian Tunnelling Method in Soil and Weak Rock", PhD Thesis, the University of Leeds, 1997.
[7] M. Karakus, R.J. Fowell, "Effect of different tunnel face advance excavation on the settlement by FEM", Tunnelling and Underground Space Technology, Vol. 18, No.5, November 2003, pp. 513–523.
[8] M. Karakus, R.J. Fowell, "2-D and 3-D finite element analyses for the settlement due to soft ground tunnelling", Tunnelling and Underground Space Technology, Vol. 21, No. 3, January 2006, pp. 381–392.
[9] M.M. Farias, A.H. Moraes, A.P. Assis, "Displacement control in tunnels excavated by the NATM: 3-D numerical simulations", Tunnelling and Underground Space Technology, Vol. 19, No. 3, May 2004, pp. 283–293.
[10] Y. Chungsik, "Performance of multi-faced Tunneling –A 3D numerical investigation", Tunneling and Underground Space Technology, Vol. 24, No. 5, September 2009, pp.562–573.
[11] B. Zhu, X. Shi, "Study on Construction of Long Span and Soft Rock Tunnel with Numerical Simulation", Applied Mechanics and Materials, Vol.438–439, November 2013, pp. 964–968.
[12] X.M. Wang, H.w. Huang, and X.Y.Xie "effects of different bench length on the deformation of surrounding
rock by FEM", Geotechnical Aspects of Underground Construction in Soft Ground, © 2009 Taylor & Francis Group, 2009, pp. 729–733.
[13] W. Schubert "The observational Approach in Tunnelling", Institute for Rock Mechanics and Tunnelling, Graz University of Technology, Austria, April 2016, pp. 1–8.
[14] G. Atzl " Challenges and Solutions for large scale Tunnelling in Urban Environment" Proceedings of the World Tunnel Congress, Surface challenges, Underground solutions, Bergen, Norway, June 2017, pp. 1–11.
[15] E. Hoek, C. Carranza-Torres, M. Diederichs, and B. Corkum "Integration of geotechnical and structural design in tunneling", The 56th Annual Geotechnical Engineering Conference to be held in Minneapolis, February 2008, pp. 1–54.
[16] Iran Water and Power Resourced Development Co. Report, "Geological Report of Bakhtiyari Dam", 2006.
[ 17 [ مرتضی اسماعیلی و ولی اله خلیلیان، "بررسی عددی رفتار استاتیکی و دینامیکی خاکریز های راه آهن ساخته شده با ژئوفوم"، نشریه
مدلسازی در مهندسی، دوره 12 ، شماره 36 ، بهار 1393 ، صفحات 65 - 83 .
[ 18 [ محمد حاجی عزیزی، محمود رحمانی، نجف بیگلری، "تحلیل اجزای محدود سدهای زیرزمینی و نکات مهم در طراحی و اجرای آنها-
مطالعه موردی سد زیرزمینی آبخوری در استان سمنان"، نشریه مدل سازی در مهندسی، دوره 12 ، شماره 38 ، پاییز 1393 ، صفحات 153 -
165 .
[ 19 [ روح اله بصیرت، حسین سالاری راد، حامد ملاداودی، "تحلیل عددی سیستم نگهداری منفصل )سگمنتال( تحت بار زلزله"، نشریه
مدل سازی در مهندسی، دوره 16 ، شماره 54 ، پاییز 1397 ، صفحه 177 - 187 .
254 بهینهسازی حفاری تونلهای بزرگ مقطع بر مبنای ارزیابی عددی
مجله مدل سازی در مهندسی سال هفدهم، شماره 59 ، زمستان 1398
[20] Itasca Consulting Group, "UDEC version 5, User's manual", 2004.
[21] A. Palmtrom, "The use of RMi in the design of rock support in underground openings", PhD Thesis, University Of Oslo, 1995.