Modeling and evaluation of technical, economical and environmental performance of molten carbonate fuel cell compared to micro turbine gas for the production of electricity and heat simultaneously

Document Type : Power Article

Author

Sharif University of Technology

Abstract

Given the increased consumption and energy costs, the reduction of fossil fuels and the growing concern for environmental issues and global warming, finding a way to convert energy with high efficiency and low environmental impact is essential. The purpose of this study is to model and evaluate the technical, economical and environmental aspects of the molten carbonate fuel cell compared to the conventional technology of micro turbine gas. According to the estimates made in various capacities, the fuel efficiency of the fuel cell was 23% higher than that of the micro turbine, which would reduce fuel consumption in the fuel cell. In terms of the environment, the amount of carbon dioxide produced in a fuel cell and micro turbine is 377 and 625 grams per kilowatt-hour, which represents 40% lower emissions in fuel cells. In the economic evaluation, various parameters such as carbon taxes, fuel prices and fuel cell stack costs are very influential. According to forecasts, with increasing carbon taxes in the coming years and lowering the cost of fuel cell technology, this technology can be exploited by conventional power generation technologies such as gas micro turbines.

Keywords



[1] R. Banos, F. Manzano-Agugliaro, F.G. Montoya, A. Alcayde and J. Gomez, "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, vol. 15, 2011, pp. 1753-1766.
]2[ مجله ،» مدلسازی و شبیهسازی راهبردهای بهینۀ مدیریت انرژی در خودروی هیبرید پیل سوختی « ، س. احمدی و م. ت. بطحایی
مدلسازی در مهندسی، دوره 15 ، شماره 50 ، پاییز 1396 ، صفحه 1 - 16 .
[3] D. W. Hengeveld and S.T. Revankar, "Economic analysis of a combined heat and power molten carbonate fuel cell system", Journal of Power Sources, vol. 165, 2007, pp. 300-306.
[4] A. Shirazi, M. Aminyavari, B. Najafi, F. Rinaldi and M. Razaghi, "Thermal-economic-environmental analysis and multi objective optimization of an internal-reforming solid oxide fuel cell-gas turbine hybrid system", International Journal of Hydrogen Energy, vol. 37, 2012, pp. 19111-19124.
[5] P. Heidebrecht and S. Sundmacher, "Molten carbonate fuel cell (MCFC) with internal reforming: model-based 424 ر یطی عملکرد پیل سوختی کربنات مذاب د یستمح ی، اقتصادی و ز فن ییاب مدلسازی و ارز ...
analysis of cell dynamics", Chemical Engineering Science, Vol. 58, 2003, pp. 1029-1036.
[6] J. Brouwer, F. Jabbari, E. M. Leal and T. Orr, "Analysis of a molten carbonate fuel cell: Numerical Modeling and experimental validation", Journal of Power Sources, Vol. 158, 2006, pp. 213-224.
[7] S. Campanari, G. Manzolini and P. Chiesa, "Using MCFC for high efficiency CO2 capture from natural gas combined cycles: Comparison of internal and external reforming", Applied Energy, Vol. 112, 2013, pp. 772-783.
[8] K. Kordesch and G. Simader, Fuel cells and their applications, VCH, New York,1996.
[9] M. Pfafferodt, P. Heidebrecht and K. Sundmacher, "Stack modelling of a Molten Carbonate Fuel Cell (MCFC)", Fuel Cells, Vol. 10, No. 4, 2010, pp. 619-635.
[10] J. Milewski, M. Wolowicz, A. Miller and R. Bernat, "A reduced order model of molten carbonate fuel cell: A proposal", International Journal of Hydrogen Energy, Vol. 38, 2013, pp. 11565-11575.
[11] W. He and Q. Chen, "Three-dimensional simulation of a molten carbonate fuel cell stack using computational fluid dynamics technique", Journal of Power Sources, Vol. 55, No. 1, 1995, pp. 25-32.
[12] F. Yoshiba, N. Ono, Y. Izaki, T. Watanabe and T. Abe, "Numerical analyses of the internal conditions of a molten carbonate fuel cell stack: comparision of stack performances for various gas flow types", Journal of Power Sources, Vol. 71, No. 1, 1998, pp. 328-336.
[13] P. Wang, L. Zhou, G. Li, H. Lin, Z. Shao, X. Zhang and B. Yi, "Direct internal reforming molten carbonate fuel cell with core-shell catalyst", International Journal of Hydrogen Energy, Vol. 37, 2012, pp. 2588-2595.
[14] J. H. koh, B. S. Kang and H. C. Lim, "Analysis of temperature and pressure fields in molten carbonate fuel cell stacks", AICHE Journal, Vol. 47, 2001, pp. 1941-1956.
[15] J. H. Koh, B. S. Kang and H. C. Lim, "Effect of various stack parameters on temperature rise in molten carbonate fuel cell", Journal of Power Sources, vol. 91, No. 2, 2000, pp. 161-171.
[16] A. Liu and Y. Weng, "Modeling of molten carbonate fuel cell based on the volume-resistance characteristics and experimental analysis", Journal of Power Sources, Vol. 195, 2010, pp. 1872-1879.
[17] M. Pfafferodt, P. Heidebrecht and K. Sundmacher, "Stack modelling of molten carbonate fuel cell", Fuel Cells, Vol. 10, 2010, pp. 619-635.
[18] M. D. Lukas, K. Y. Lee and H. Ghezel Ayagh, "Development of a stack simulation molel for control study on direct reforming Molten Carbonate Fuel Cell Power Plant", IEEE Transactions on Energy Conversion, Vol. 14, 1999, pp. 1651-1657.
[19] A. Haghighat Mamaghani, B. Najafi, A. Shirazi and F. Rinaldi, "Exergeic, economic and environmental evaluations and multi-objective optimization of a comnbined molten carbonate fuel cell-gas turbine system", Applied Thermal Engineering, Vol. 77, 2015, pp. 1-11.
[20] P. Lora and S. Campanari, "Development of a thre dimensional molten carbonate fuel cell model and application to hybrid cycle simulation", Journal of Fuel Cell Science and Technology, Vol. 4, 2007, pp. 501-510.
[21] L. Leto, C. Dispenza, A. Moreno and A. Calabro, "Simulation model of a molten carbonate fuel cell-micro turbine hybrid system", Applied Thermal Engineering, Vol. 31, 2011, pp. 1263-1271.
[22] J. Ohtuski, A. Kusunoki, T. Murahashi, T. Tanaka and E. Nishiyama, in Proc Int. Fuel Cell Conf, Makuhan, Japan, Feb 3-6, 1992, pp 251-254.
[23] T. Okada, H. Ide, M. Miyazaki and T. Tanaka, in Proc 25th Intersociety Energy Conversion Engineering Conf, Reno, NV, USA, Aug 12-17, 1990, Vol 3 pp. 207-212.
[24] K. Jarosch, T. El Solh and H. de Lasa, "Modelling the catalytic steam reforming of methane: discrimination between kinetic expressions using sequentially designed experiments, "Chemical Engineering Science, Vol. 57, 2002, pp. 3439-3451.
[25] A. Appleby, L. Blomen and M. Mugerwa, in Fuel Cell Systems, New York, Plenum Press, 1993.
[26] M. Fermeglia, A. Cudicio, G. DeSimon, G. Longo and S. Pricl, "Process Simulation for Molten Carbonate Fuel Cells", Fuel Cells, Vol. 5, No. 1, 2005.
[27] L. Duan, B. He and Y. Yang, "Parameter optimization study on SOFC-MGT hybrid power system", International Journal of Energy Research, Vol. 35, 2011, pp. 721-732.
[28] S. Campanari, P. Chiesa and G. Manzolini, "CO2 capture from combined cycle integrated with Molten Carbonate Fuel Cells", International Journal of Greenhouse Gas Control, Vol. 4, 2010, pp. 441-451.
[29] H. Hao, H. Zhang, S. Weng and M. Su, "Dynamic numerical simulation of a molten carbonate fuel cell", Journal of Power Sources, Vol. 161, 2006, pp. 849-855.
[30] Y. Haseli, I. Dincer and G. Naterer, "Thermodynamic modeling of a gas turbine cycle combined with a solid oxide fuel cell", International Journal of Hydrogen Energy, vol. 33, 2008, pp. 5811-5822. رادمنش و هادی 425
مجله مدلسازی در مهندسی سال شانزدهم، شماره 55 ، زمستان 1397
]31[ شبیهسازی پارامتری یک سیستم تولید همزمان بر پایه میکروتوربین صنعتی از دیدگاه انرژی « ، ج. پیرکندی، م. جهرمی و م. محمودی
مجله مدلسازی در مهندسی، دورۀ ،» و اقتصادی 13 ، شمارۀ 40 ، بهار 1394 ، صفحه 17 - 32 .
[32] H. Huang, J. Li, Z. He, T. Zeng, N. Kobayashi and M. Kubota, "Performance analysis of a MCFC/MGT Hybrid Power system Bi-Fueled by city gas and biogas", Energies, Vol. 8, 2015, pp. 5661-5667.
[33] S. Sanaye and A. Ketabi, "4E analysis and multi objective optimization of a micro gas turbine and solid oxide fuel cell hybrid combined heat and power system", Journal of Power Sources, Vol. 247, 2014, pp. 294-306.
[34] K. Sugiura and I. Naruse, "Feasibility study of the co-generation system with direct internal reforming molten carbonate fuel cell for residential use", Journal of Power Sources, Vol. 106, 2002, pp. 51-59.
]35[ مجله مدلسازی در مهندسی، دورۀ ،» مدلسازی بازیابهای حرارتی دوار « ، ع. زینلی، ح. اقبالی و و. رفیعی 10 ، شمارۀ 28 ، بهار 1391 ،
صفحه 9 - 18 .
[36] S. A. Song, J. Han, S. P. Yoon, S. W. Nam, I.-H. Oh and D. K. Choi, "Economic feasibility study for Molten Carbonate Fuel Cells fed with biogas", Journal of Electrochemical Science and Technology, Vol. 1, 2010, pp. 102-111.
[37] A. Bejan, G. Tsatsaronis and M. Moran, Thermal design and optimization, John Wiley & Sons, 1996.
[38] A. Valero, M.A. Lozano, L. Serra, G. Tsatsaronis, J. Pisa, C. Frangopoulos and M.R. Von Spakovsky, "CGAM Problem: Definition and conventional solution", Energy, Vol. 19, 1994, pp. 279-286.
[39] A. shirazi, M. Aminyavari, B. Najafi, F. Rinaldi and M. Razaghi, "Thermal-economic-environmental analysis and multi-objective optimization of an internal-reforming solid oxide fuel cell-gas turbine hybrid system", International Journal of Hydrogen Energy, Vol. 37, 2012, pp. 19111-19124.
[40] S. Campanari, P. Chiesa, G. Manzolini and S. Bedogni, "Economic analysis of CO2 Capture from natural gas combined cycles using Molten Carbonate Fuel Cells", Applied Energy, 2014.
[41] A. Haghighat Mamaghani, B. Najafi, A. Shirazi and F. Rinaldi, "4E analysis and multi objective optimization of an integrated MCFC and ORC system", Energy, 2015, pp. 1-14, 2015.
[42] https://www.c2es.org/,[Online].
426 ر یطی عملکرد پیل سوختی کربنات مذاب د یستمح ی، اقتصادی و ز فن ییاب مدلسازی و ارز ...