Numerical Investigation of the Effect of Geometric Parameters of Nozzles on the Performance of Flameless Combustion of natural gas and NOx

Document Type : Mechanics article

Authors

1 Faculty of Mechanical Engineering,University of Kashan,Kashan,Iran

2 Associate professor, Faculty of Mechanical engineering, University of Kashan

Abstract

Flameless combustion is a leading way to increase combustion efficiency and reduce pollutant production. The investigation of the properties of flameless combustion in industrial furnaces needs further study.The purpose of this study is to numerically investigate the effect of geometric parameters including distance between the fuel and air injection nozzles and number of fuel nozzles on flameless combustion performance in a semi-industrial furnace.Standard k-ɛ and the eddy dissipation concept models are used to model turbulence and combustion, respectively, and the WSGGM model is used to calculate the absorption and emission coefficients. Comparison of preliminary simulation results with experimental data on temperature and velocity distribution at different cross sections shows good compatibility. The accuracy of the radiative model has been evaluated by examining the states without applying the radiative model,P1 model and DO model and based on results P1 model has been selected.The results show that changing the distance of the fuel and oxidizer nozzles is more effective in the upstream area of the combustion chamber.By removing the fuel nozzle from the center of the chamber, the effect of the return combustion products on the reaction zone intensifies and the peak temperature of the chamber decreases. Also,with the increase in the number of fuel injectors,more temperature gradient is created in the chamber and combustion from the flameless state leads to the unstable flame.Increasing the distance between the nozzles with fewer fuel nozzles improves the accessing to flameless combustion state in industrial furnaces and reduces the amount of nitrogen oxide emissions produced.

Keywords


[1] J. Warnatz, U. Maas and R.W. Dibble, COMBUSTION: Physical and Chemical Fundamentals, Modeling and Simulation, Experiment, Pollutant formation, 4th ed., Springer, 2006.
[2] R.W. Schefer, D.M. Wicksall and S.K.Aggarwal, "Combustion of Hydrogen-Enriched Methane in A Lean Premixed Swirl Stabilized Burner", Proceedings of the Combustion, Vol. 29, 2002, pp. 843- 851.
[3] Y.B. Zeldovich and P.Y. Sadovnikov, Oxidation of Nitrogen in Combustion, Science Academy of USSR, 1947.
[4] L. Lazic, M.A. Varga and J. Kizek "An Experimental Study of the Influence of FGR on NOx Formation", Material in Technology, Vol. 38, No. 5, January 2004, pp. 269–274.
[5] A. Cavaliere, M.D. Joannon, "Mild Combustion", Progress in Energy and Combustion Science, Vol. 30, 2004, pp. 329-366.
[6] J.A. Wünning, J.G. Wünning, "Flameless Oxidation to Reduce Thermal NO-Formation", Progress in Energy Combustion Science, Vol. 23, 1997, pp. 81-94.
[7] F. Hu, P. Li, J. Guo, Z. Liu, L. Wang and et al., "Global Reaction Mechanisms for MILD Oxy-Combustion of Methane", Energy, Vol. 147, 2018, pp. 839–857.
[8] Y. Tu, K. Su, H. Liu, Z. Wang, Y. Xie, C. Zheng and et al., "MILD Combustion of Natural Gas using Low Preheating Temperature Air in an Industrial Furnace", Fuel Processing Technology, Vol. 156, 2017, pp. 72–81.
[9] مازیار دهقان، یوسف رحمانی، سیف‌الله سعدالدین، محمدصادق دلی‌پور و داود دومیری گنجی، «بررسی انتقال حرارت در فوم‌های فلزی در حضور جابه‌جایی اجباری و تشعشع حرارتی به روش اغتشاش هموتوپی»، مجله مدل‌سازی در مهندسی، دوره 14، شماره 46، پاییز 1395، صفحه 1-9.
[10] M.R. Shakeel, Y.S. Sanusi and E.M. Mokheimer, "Numerical Modeling of Oxy-Fuel Combustion in a Model Gas Turbine Combustor: Effect of Combustion Chemistry and Radiation Model", Energy Procedia, Vol. 142, 2017, pp. 1647-1652.
[11] M.H. Bordbar, G. Wecel and T. Hyppanen, "A Line by Line Based Weighted Sum of Gray Gases Model for Inhomogeneous CO2-H2O Mixture in Oxy-fired Combustion", Combust Flame, Vol. 161, 2014, pp. 2435–45.
[12] C.V. Silva, F.H. R. Franca and H.A. Vielmo, "Analysis of the Turbulent, Non-Premixed Combustion of Natural Gas in a Cylindrical Chamber with and without Thermal Radiation", Combustion Science and Technology, Vol. 179, No. 8, 2007, pp. 1605–1630.
[13] رضا صباغ و نادر رهبر، «بررسی تأثیر شکل هندسی بر بیشینه دمای جداره نوک فلر و توزیع آلاینده‌های خروجی آن»، مجلة مدل‌سازی در مهندسی، دوره 13، شماره 40، بهار 1394، صفحه 44-57.
 [14] Y. Tu, H. Liu, S. Chen and et al., "Effect of Furnace Chamber Shape on MILD Combustion of Natural Gas", Applied Thermal Engineering, 2014, pp.1-12.
[15] مصطفی زاهدزاده و فتح‌الله امی، «مطالعه عددی پاشش متقاطع جت‌های صوتی دو‌مرحله‌ای در جریان عرضی مافوق صوت بعد از یک پله»، مجله مدل‌سازی در مهندسی، دوره 17، شماره 56، بهار 1398، صفحه 20-29.
[16] J. Mi, F. Wang, P. Li and B.B. Dally, "Modified Vitiation in a Moderate or Intense Low Oxygen Dilution (MILD) Combustion Furnace", Energy & Fuels, 2012, pp. 265-277.
[17] P. Li, J. Mi, B.B. Dally, R.A. Craig and F. Wang, "Premixed Moderate or Intense Low Oxygen Dilution (MILD) Combustion from a Single Jet Burner in a Laboratory Scale Furnace", Energy & Fuels, 2011, pp. 2782-2793.
[18] J. Mi, P. Lit, B.B. Dally and R.A. Craig, "Importance of Initial Momentum Rate and Air-Fuel Premixing on Moderate or Intense Low Oxygen Dilution (MILD) Combustion in a Recuperative Furnace", Energy & Fuels, 2009, pp. 5349–5356.
[19] L. Bo, W. Yuanhua and X. Hong, "Numerical Study of Air Nozzles on Mild Combustion for Application to Forward Flow Furnace", China Petroleum Processing and Petrochemical Technology, 2016, pp. 108-122.
[20] D. Perrone, T. Castiglione, P. Morrone, S. Barbarelio and M. Amelio, "NOx Emissions for Oxy-Mild Combustion of Pulverized Coal High Temperature Pre-heated Oxygen", Energy Procedia, Vol. 148, 2018, pp. 567-574.
[21] K.K. Kuo, Principles of Combustion, Wiley, USA, 1996.
[22] E. Fawzy and E.S. Habik, Fundamentals and Technology of Combustion, 1st ed., Elsevier Science, 2002.
[23] B.F. Magnussen, "The Eddy Dissipation Concept for Turbulent Combustion Modeling, its Physical and Practical Implications", Technical. Report Norwegian Institue of Technology, January 1990.
[24] S. Orsino and R. Weber, "Numerical Simulation of Combustion of Natural Gas with High-Temperature Air", Combustion Science and Technology, 2001, pp. 1-34.
[25] A. Rebola, P.J. Coelho and M. Costa, "Assessment of the Performance of Several Turbulence and Combustion Models in the Numerical Simulation of a Flameless Combustor", Combustion Science and Technology, 2012, pp. 600-626.
[26] GRI-Mech 3.0, The Combustion Laboratory at the University of California, Berkeley Department of Mechanical Engineering, 1999.
[27] C. Westbrook and F. Dryer, "Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames", Combustion Science and Technology, 1981, pp. 31–43.
[28] T. Taojie, Y. Wenming and L. Hao, "A refined global reaction mechanism for lowly preheated MILD combustion of methane", Energy & Fuels, 2017, pp. 10144-10157.
[29] F. Wang, P. Li, J. Mi and j. Wang, "A Refined Global Reaction Mechanism for Modeling Coal Combustion Under Moderate or Intense Low-oxygen Dilution Condition", Energy, Vol. 157, 2018, pp. 764–777.
[30] W.P. Jones and R.P. Lindstedt, "Global Reaction Schemes for Hydrocarbon Combustion", Combust Flame, Vol. 73, 1988, pp. 233–49.
[31] M. Vascellari and G. Cau, "Influence of Turbulence–Chemical Interaction on CFD Pulverized Coal MILD Combustion Modeling", Fuel, 2012, pp.90–101.