Evaluation of friction using cylinder compression test: two novel approaches based on the barreling deformation and forging force

Document Type : Mechanics article

Authors

1 Mechanical Engineering Department, Quchan University of Technology

2 mechanical engineering department, faculty of engineering, Quchan University of Technology, Quchan, Iran

Abstract

In this paper, two novel and simple approaches are presented for the evaluation of friction in the metal forming processed. By employing the data obtained from a cylinder compression test in addition to the flow curve, the friction coefficient of the process can also be evaluated. Hence, no extra measurement is required. Two new exponential parameters are introduced, geometrical and force barreling factors which are defined based on the change in geometry and forging force of the deformed cylinder, respectively. Numerical simulations are carried out to determine friction calibration curve diagram of cylindrical samples under various friction conditions. Then, by plotting the experimental data on the calibration curve diagram, the coefficient of friction of the process is determined. The results of the friction coefficients obtained from the geometrical and force barreling approaches are the same. The conventional ring compression tests are also performed for the corresponding lubricants to validate the proposed approaches. It is observed that the friction coefficients predicted by the presented approaches are identical to those obtained from the ring compression test. Also, friction coefficients that are greater than 0.2 can be determined more precisely than the ring compression test due to the increase in the distance of the curves.

Keywords


[1] حشمت اله حقیقت و حامد شایسته، "تحلیل کرانه بالایی فرآیند اکستروژن ورق دو فلزی با قالب گوه ای شکل"، نشریه مدل‌سازی در مهندسی، دوره 10، شماره 28، بهار 1391، صفحه 43- 51.
[2] محمدرضا وزیری سرشک، محمود سلیمی و محمد مشایخی، "فرم ریاضی مدل ساختاری ماده قابل کاربرد در تحلیل رفتار پلاستیک فلزات در مدلسازی ماشین­کاری"، نشریه مدل‌سازی در مهندسی، دوره 10، شماره 31، زمستان 1391، صفحه 37- 48.
[3] M. Kunogi, "A new method of cold extrusion", Journal of the Scientific Research Institute, Vol. 50, 1956, pp. 215-246.
[4] E. M. Mielnik, Metalworking Science and Engineering, 1th ed., McGraw-Hill, 1991.
[5] H. Sofuoglu, J. Rasty, "On the measurement of friction coefficient utilizing the ring compression test", Tribology International, Vol. 32, No. 6, 1999, pp. 327-335.
[6] I. Kačmarčik, D. Movrin, A. Ivanišević, "One contribution to the friction investigation in bulk metal forming", Journal for Technology of Plasticity, Vol. 36, No. 1, 2011, pp. 35-48.
[7] A. M. Camacho, A. I. Torralvo, C. Bernal, L. Sevilla, "Investigations on Friction Factors in Metal Forming of Industrial Alloys", Procedia Engineering, Vol. 63, 2013, pp. 564-572.
 [8] مجتبی دهقان، فتح­ا... قدس و جواد دعایی، "شبیه­سازی و بررسی آزمون فشار حلقه به منظور اندازه­گیری اصطکاک در فرآیند فورج داغ"، نشریه مدل‌سازی در مهندسی، دوره 10، شماره 31، زمستان 1391، صفحه 59- 67.
[9] D. Zhang, B. Liu, J. Li, M. Cui, S. Zhao, "Variation of the friction conditions in cold ring compression tests of medium carbon steel", Friction, 2019, pp. 1-12.
[10] R. Fadli, W. A Wirawan, A. Zulkarnaen, H. B. Wahjono. "The Influence Of Temperature And Lubrication Variation On The Dimension Change In Ring Compression Test Using Ansys Software", Journal of Physics: Conference Series, Vol. 1273, No. 1, IOP Publishing, 2019, p. 012080.
[11] X. Tan, P. A. F. Martins, N. Bay, W. Zhang, "Friction studies at different normal pressures with alternative ring-compression tests", Journal of Materials Processing Technology, Vol. 80–81, 1998, pp. 292-297.
[12] Q. Zhang, E. Felder, S. Bruschi, "Evaluation of friction condition in cold forging by using T-shape compression test", Journal of Materials Processing Technology, Vol. 209, No. 17, 2009, pp. 5720-5729.
[13] R. Thakur, M. Gangwar, P. Jain, "Development of New Design of Specimens for Friction Determination in Metal Forming", Journal of Mechanical and Civil Engineering, Vol. 3, No. 5, 2012, pp. 21-26.
[14] F. Fereshteh-Saniee, F. Fatehi-Sichani, "An investigation on determination of flow curves at room temperature and under forming conditions", Journal of materials processing technology, Vol. 177, No. 1, 2006, pp. 478-482.
[15] R. Ebrahimi, A. Najafizadeh, "A new method for evaluation of friction in bulk metal forming", Journal of Materials Processing Technology, Vol. 152, No. 2, 2004, pp. 136-143.
[16] S. Solhjoo, "A note on “Barrel Compression Test”: A method for evaluation of friction", Computational Materials Science, Vol. 49, No. 2, 2010, pp. 435-438.
[17] Y. Li, E. Onodera, A. Chiba, "Friction coefficient in hot compression of cylindrical sample", Materials transactions, Vol. 51, No. 7, 2010, pp. 1210-1215.
[18] Z. Yao, D. Mei, H. Shen, Z. Chen, "A friction evaluation method based on barrel compression test", Tribology Letters, Vol. 51, No. 3, 2013, pp. 525-535.
[19] X.G. Fan, Y.D. Dong, H. Yang, P.F. Gao, M. Zhan, "Friction assessment in uniaxial compression test: A new evaluation method based on local bulge profile", Journal of Materials Processing Technology, Vol. 243, No. 1, 2017, pp. 282-290.
[20] Y. N. Loginov, A. I. Golodnov, I. S. Stepan, "Effect of Friction on Compression Test of Ti-6Al-4V with Open-Cellular Structure", Solid State Phenomena, Vol. 299, 2020, pp. 452-456.
[21] J.H. Hollomon, "Tensile deformation", Trans. AIME 162, Vol. 162, 1945, pp. 268-288.