Design of seamless graphene inverter together with its transfer matrix modeling

Document Type : Power Article

Authors

1 Department of Electrical Engineering, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran

2 Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Abstract

Abstract:
A seamless graphene inverter including graphene nanoribbon field effect transistor (GNRFET) and graphene interconnect is proposed. The seamless structure is suggested to eliminate the ohmic, schottky, and parasitic resistances in the junction of the traditional interconnects with the Gate, Source and Drain of GNRFET.
After that, using the circuit models of the graphene devices that are used in the proposed structure, transfer matrix model of the proposed seamless graphene inverter is calculated and extracted. All of the capacitive, inductive and scattering effects are included in the assumed circuit models of the GNRFET - graphene interconnect and consequently in the overall matrix model of the seamless graphene inverter.
Elimination of the ohmic, schottky and parasitic resistances causes to improve in the working speed of the proposed inverter. Extraction of the transfer matrix model of the seamless graphene inverter and calculation of its step time response, relative stability and frequency bandwidth confirms this improvement. The advantage of the transfer matrix model of the proposed inverter is that any change in the physical parameters of the graphene nanoribbons that are used in the structure can be included in the model and one can analyze the effect of it in all of the technology nodes. Using the circuit model and the extracted transfer matrix, anyone can evaluates various stability analyses such as Nyquist, Bode and Nichols together with the time-frequency responses of the graphene seamless inverter used in very large scale integrated (VLSI) circuits.

Keywords


[1] J. Phiri, L. Sisko Johansson, P. Ganea and Th. Maloney, "A comparative study of mechanical, thermal and electrical properties of graphene, graphene oxide and reduced graphene oxide-doped microfibrillated cellulose nanocomposites", Composites Part B: Engineering, Vol. 147, Aug.August 2018, pp. 104-113.
[2] J. Wang, X. Mu and M. Sun, "The Thermal, Electrical and Thermoelectric Properties of Graphene Nanomaterials", Nanomaterials, Vol. 9, No. 2, Feb.February 2019, pp. 1-29.
[3] K. L. Wong, M. W. Chuan, A. Hamzah, Sh. Rusli, N. E. Alias, S. M. Sultan, C. S. Lim and M. L. Peng Tan, "Electronic properties of graphene nanoribbons with line-edge roughness doped with nitrogen and boron", Physica E: Low-dimensional Systems and Nanostructures, Vol. 117, Jan.January 2020, pp. 1-13.
[4] D. Geelen, J. Jobst, E. E. Krasovskii, S. J. van der Molen and R. M. Tromp, "Nonuniversal Transverse Electron Mean Free Path through Few-layer Graphene", Physical Review Letters, Vol. 123, No. 086802, August 2019, pp. 1-6.
[5] B. S. Jessen, L. Gammelgaard, M. R. Thomsen, D. M. A. Mackenzie, J. D. Thomsen, J. M. Caridad, E. Duegaard, K. Watanabe, T. Taniguchi, T. J. Booth, T. G. Pedersen, A. P. Jauho and P. Bggild, "Lithographic band structure engineering of graphene", Nature Nanotechnology, Vol. 14, April 2019, pp. 340–346.
[46] M. Gamil, Q. X. Pei and Y. Y. Zhang, "Mechanical behaviour of kirigami graphene under shear loading", Computational Materials Science, Vol. 173, Feb.February 2020, pp. 1-6.
[7] Y. Dong, Y. He, Y. Wang and H. Li, "A theoretical study of ripple propagation in defective graphene", Carbon, Vol. 68, January 2014, pp. 742-747.
[8] W. Tian, W. Li, W. Yu and X. Liu, "A review on lattice defects in graphene: types, generation, effects and regulation", Micromachines, Vol. 8, No. 163, May 2017, pp. 1-15.
[9] K. Banerjee, "CMOS-compatible graphene", 65th international electron device meeting, Montgomery Village, MD 20886 USA, February 2019, pp. 1-1.
[510] M. Guo, Y. Qian, H. Qi, K. Bi and Y. Che, "Experimental measurements on the thermal conductivity of strained monolayer graphene", Carbon, Vol. 157, Feb.February 2020, pp. 185-190.
[611] B. Qiu, X. W. Zhao, G. C. Hu, W. W. Yue, X. B. Yuan and J. F. Ren, "Tuning optical properties of Graphene/WSe2 heterostructure by introducing vacancy: First principles calculations", Physica E: Low-dimensional Systems and Nanostructures, Vol. 116, Feb.February 2020, pp. 1-6.
[712] F. Sharif, A. Shayesteh Zeraati, P. Ganjeh-Anzabi, N. Yasri, M. Perez-Page, S. M. Holmes, U. Sundararaj, M. Trifkovic and E. P. L. Roberts, "Synthesis of a high-temperature stable electrochemically exfoliated graphene" Carbon, Vol. 157, Feb.February 2020, Pages pp. 681-692.
[813] H. Zhang, F. Ding, H. Li, F. Qu, H. Meng and H. Gu, "Controlled synthesis of monolayer graphene with a high quality by pyrolysis of silicon carbide", Materials Letters, Vol. 244, Feb.February 2019, pp. 171-174.
[914] H. Ki Hong N. Yeon Kim, A. Yoon, S. Woo Lee, J. Park, J. Yoo and Z. Lee, "Synthesis of high-quality monolayer graphene by low-power plasma", Current Applied Physics, Vol. 19, No. 1, Jan.January 2019, pp. 44-49.
[15] Z. Eres and S. Hrabar, "Low-cost synthesis of high-quality graphene in doit-yourself CVD reactor", Automatika (Taylor & francis), Vol. 59, No. 3, September 2018, pp. 255-261.
[16] S. R. Joshi, A. Sharma, G. Kim and J. Jang, "Low cost synthesis of reduced graphene oxide using biopolymer for influenza virus sensor", Materials Science and Engineering C, Vol. 108, No. 110465, March 2020, pp. 1-30.
[17] Y. Liu, S. Luo, S. Yan, J. Feng and T. Yi, "Green synthesis of reduced graphene oxide as high-performance electrode materials for supercapacitors", Ionics, Vol. 26, July 2020, pp. 415-422.
[18] S. Sharma, S. Koduvayur Ganeshan, P. Kumar Pattnaik, S. Kanungo and K. N. Chappanda, "Laser induced flexible graphene electrodes for electrochemical sensing of hydrazine", Materials Letters, Vol. 262, No. 127150 , March 2020, pp. 1-13.
[19] D. X. Luong, K. V. Bets, W. Ali Algozeeb, M. G. Stanford, C. Kittrell, W. Chen, R. V. Salvatierra, M. Ren, E. A. Mchugh, P. A. Advincula, Z. Wang, M. Bhatt, H. Guo, V. Mancevski, R. Shahsavari, B. I. Yakobson and J. M. Tour, "Gram-scale bottom-up flash grapheme synthesis", Nature, Vol. 577, January 2020, pp. 647-651.
[20] B. Munkhbat, A. B. Yankovich, R. Verre, E. Olsson and T. Shegai, "Transition metal dichalcogenide metamaterials with atomic precision", Physics Materials Science, Vol. 5696, February 2020, pp. 1-13.
[21] E. Mathew Sebastian, S. Kumar Jain, R. Purohit, S. K. Dhakad and R. S. Rana, "Nanolithography and its current advancements", Materials Today Proceedings, Vol. 23, March 2020, pp. 1-6.
[22] D. R. Ward, S. W. Schmucker, E. M. Anderson, E. Bussmann, L. Tracy, T. Lu, L. N. Maurer, A. Baczewski, D. M. Campbell, M. T. Marshall and S. Misra, "Atomic precision advanced manufacturing for digital electronics", Electronic Device Failure Analysis, Vol. 22, No. 1, February 2020, pp. 1-7.
[23] C. Moreno, "Atomically-precise 1D and 2D graphene nanoarchitectures", 1 and 2DM Conference and Exhibition, Tokyo, Japan, January 2020, pp. 1-2.
[24] S. Zhao, G. Borin Barin, T. Cao, J. Overbeck, R. Darawish, T. Lyu, S. Grant Drapcho, S. Wang, T. Dumslaff, A. Narita, M. Calame, K. Mullen, S. G. Louie, P. Ruffieux, R. Fasel, and F. Wang, "Optical imaging and spectroscopy of atomically precise armchair graphene nanoribbons", Nano Letters, Vol. 20, No. 2, January 2020, pp. 1124-1130.
[1025] B. Kumari and M. Sahoo, "Stability analysis of multilayer vertical graphene nanoribbon interconnects", Materials Research Express, Vol. 6, No. 8, May 2019, pp. 1-10.
[1126] L. Qian, Y. Xia, Sh. Ge, Y. Ye and J. Wang, "Stability analysis for coupled multilayer graphene nanoribbon interconnects", Microelectronics Journal, Vol. 58, Dec.December 2016, pp. 32-38.
[1227] S. Haji-Nasiri, M. K. Moravvej-Farshi, and R. Faez, "Stability Analysis in Graphene Nanoribbon Interconnects", IEEE electron device letters, Vol. 31, No. 12, December 2010, pp. 1458-1460.
[1328] S. Haji-Nasiri, M. K. Moravvej-Farshi, and R. Faez, "Time domain analysis of graphene nanoribbon interconnects based on transmission line model", Iranian journal of electrical & electronic engineering, Vol. 8, No. 1, October 2012, pp. 37-44.
[1429] S. Haji-Nasiri, M. K. Moravvej-Farshi, and R. Faez, "A seamless-pitched graphene nanoribbon field effect transistor", Physica E: Low-dimensional systems and nanostructures, Vol. 74, Aug.August 2015, pp. 414-420.
[1530] Y. Zhijie, Sh. Qingyi and Zh. Juan, "Super tiny nanoscale graphene nanoribbon field-effect transistor", Chinese Journal of Physics, Vol. 59, Jun.June 2019, pp. 572-577.
[1631] K. Tamersit and F. Djeffal, "Boosting the performance of a nanoscale graphene nanoribbon field-effect transistor using graded gate engineering", Journal of Computational Electronics, Vol. 17, May 2018, pp. 1276-1284.
[1732] E. Zonoobi Doyom and S. Haji-Nasiri, "The effect of channel uniaxial strain on thermal conductivity of graphene nano-ribbon field effect transistor", Modern Physics Letters B, Vol. 33, No. 01, Dec.December 2019, pp. 1-12.
[1833] Sh. Han, A. Valdes, S. Oida and K. A. Jenkins, "Graphene radio frequency receiver integrated circuit" Nature Communications, Vol. 5, No. 3086, Jan.January 2014, pp. 1-6.
[1934] M. Saeed, A. Hamed, Zh. Wang, M. Shaygan, D. Neumaier and R. Negraa, "Graphene integrated circuits: new prospects towards receivers realisation", Nanoscale, Vol. 10, Jul.July 2018, pp. 93-99.
[2035] S. J. Kindness, N. W. Almond, W. Michailow, B. Wei, L. A. Jakob, K. Delfanazari, Ph. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie and R. D. Innocenti, "Graphene-Integrated Metamaterial Device for All-Electrical Polarization Control of Terahertz Quantum Cascade Lasers", ACS Photonics, Vol. 6,  Jul.July 2019, pp.1547-1555.
[2136] M. Ono, M. Hata, M. Tsunekawa, K. Nozaki, H. Sumikura, H. Chiba and Masaya Notomi, "Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides", Nature Photonics, Vol. 14, Nov.November 2019, pp. 37-43.
[2237] D. Das and H. Rahaman, "Carbon Nanotube and Graphene Nanoribbon Interconnects", 1st Edition, Taylor and Francis, USA, Dec.December 2017.
[2338] L. Qian, Y. Xia, Sh. Ge, Y. Ye and J. Wang, "Stability analysis for coupled multilayer graphene nanoribbon interconnects", Microelectronics Journal, Vol. 58, Dec.December 2016, pp. 32-38.
[2439] Sh. Rakheja, Y. Wu, H. Wang and T. Palacios, "An Ambipolar Virtual-Source-Based Charge-Current Compact Model for Nanoscale Graphene Transistors", IEEE Transactions on Nanotechnology, Vol. 13, No. 5, Sep.September 2014, pp. 1005-1013.
[2540] E. Pince and C. Kocabas, "Investigation of high frequency performance limit of graphene field effect transistors", Applied Physics Letters, Vol. 97, No. 17, Nov.November 2010, pp. 173106 - 173106-3.
[2641] K. N. Parrish, M. E. Ramon, S. K. Banerjee, and D. Akinwande, "A Compact Model for Graphene FETs for Linear and Non-linear Circuits", SISPAD 2012, Denver, CO, USA, Sep.September 2012, pp. 1-4.
[2742] Y. Chen, A. Sangai, M. Gholipour and D. Chen, "Schottky-barrier-type Graphene Nano-Ribbon Field-Effect Transistors: A study on compact modeling, process variation, and circuit performance", 2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), New York, USA, July 2013, pp. 82-88.
]2843[ سید­سعید حاجی­نصیری، "تحلیل پاسخ زمانی و نایکوئیست لیزر خود­سامانده نقطه کوانتومی
InGaAs-GaAs با استفاده از مدل تابع انتقال" ، مجله مدل­سازی در مهندسی، دوره هفدهم، شماره 58 ، پاییز 1398، صفحه 22-32.
]2944[ سید­سعید حاجی­نصیری، محمد کاظم مروج فرشی و رحیم فائز، " مدل مداری و ماتریس انتقال خطوط ارتباطی نانو­لوله‌­های کربنی چندلایه نا­همسان باندل شده" ، مجله مدل­سازی در مهندسی، دوره هفدهم، شماره 58 ، پاییز 1398، صفحه 10-30.
[3045] L. Qian, Y. Xia, Sh. Ge, Y. Ye and J. Wang, "Stability analysis for coupled multilayer graphene nanoribbon interconnects", Microelectronics Journal, Vol. 58, Dec.December 2016, pp. 32-38.
]3146[ سعید اباذری، احمد صادق پیام، "پیاده­سازی کنترلر بهینه هوشمند بر مبنای تابع انرژی لیا­پانوف عناصر موازی FACTS جهت بهبود پایداری گذرا"، مجله مد­سازی در مهندسی،  دوره دوازدهم، شماره 39 ، زمستان1393، صفحه 31-43.
]3247[ مهدی درفشیان مرام  و نیما امجدی، "جلوگیری از رخداد ناپایداری­های گذرا و ولتاژ با استفاده از یک طرح اقدامات اصلاحی مبتنی بر قطع تولید و حذف بار"، مجله مدل­سازی در مهندسی، دوره چهاردهم، شماره 46 ، پاییز 1393، صفحه 137-150.
[48] X. Qin, W. Hu and J. Yang, "Tunable schottky and ohmic contacts in graphene and tellurene van der waals heterostructures", Physical Chemistry Chemical Physics, Vol. 21, October 2019, pp. 23611-23619.
[49] J. Courtin, A. Moreac, G. Delhaye, B. Lepine, S. Tricot, P. Turban, P. Schie and J. Christophe Le Breton, "Reduction of schottky barrier height at Graphene/Germanium interface with surface passivation", Applied Science, Vol. 9, No. 5014, November 2019, pp. 1-7.
[50] M. Gholipour, Y. Y. Chen,  A. Sangai, N. Masoumi, and D. Chen, "Analytical SPICE-compatible model of schottky-barrier-type GNRFETs with performance analysis", IEEE transactions on very large scale integration (VLSI) systems, Vol. 24, No. 2, March 2015, pp. 1-14.
 
[51] D. Seo , D. Yun Lee, J. Kwon, J. Jung Lee, T. Taniguchi, K. Watanabe, H. Lee, K. Soo Kim, J. Hone, Y. Duck Kim and H. Jin Choi , "High-performance monolayer MoS2 field effect transistor with large-scale nitrogen doped graphene electrodes for ohmic contact", Applied Physics Letters, Vol. 115, No. 012104, July 2019, pp. 1-5.
[52] K. Monfaredi, "Distributed Unique-Size MOS Technique: A Promising Universal Approach Capable of Resolving Circuit Design Bottlenecks of Modern Era", Circuits, Systems and Signal Processing, Vol. 38, No. 2, February 2019, pp. 512-528.
[53] R. C. Dorf and R. H. Bishop, Modern Control System, 13th edition, Prentice-Halls, Englewood, USA, January 2016.
[54] K. Ogata, Modern Control Engineering, 5th edition, Prentice-Halls, New Jersey, USA, January 2011.