Design and Atomic Modeling of Multimode Sliding Electromechanical Switch Based on Bilayer Armchair α-Graphyne Nanoribbons

Document Type : Power Article

Author

Department of Electrical Engineering, Islamshahr Branch,,Islamic Azad University,Islamshahr,Iran

Abstract

Design and atomic modeling of multimode sliding electromechanical switch based on bilayer armchair α-graphyne nanoribbons is presented by applying density functional theory combined with non-equilibrium Green's function. In the proposed switch structure, bottom graphyne layer is fixed and the top layer is movable. Different configurations of the layers are created by moving the top layer over the bottom layer along the horizontal axis with the displacement distances of 1.36 Å, 2.61 Å, 3.97 Å, 8.41 Å, 9.44 Å and 12.6 Å. There are six stacking modes for the proposed device, namely, Ab, Aa, AB, AB2, Aa2 and AA, respectively. These configurations cause current of the proposed switch changes significantly in each stacking mode. To better analysis, electronic transport properties of the proposed device including transmission spectrum, band structure, molecular energy spectrum, molecular projected self-consistent hamiltonian and transmission pathway are calculated. The results demonstrate that current switching ratio of the proposed device depends on the type of layers atomic configuration and varies significantly from one mode to another. Maximum switching ratio of the proposed device can reach to 34 under the bias voltage of 0.6 V when the mode of device changes from AA to Aa2. This suggests that the controlled movement of layers in bilayer graphyne nanoribbon device could be a useful method to design multimode sliding electromechanical switch in nanoelectronics field. Furthermore, the results exhibit that the proposed device in AB2, Aa and AA modes reveals negative differential resistance which provides ability of its usage in quantum tunneling device.

Keywords


[1] A.K. Geim , K.S. Novoselov, "The rise of graphene", Nature Materials, Vol. 6, March 2007, pp. 183–191
]2[ رحمان زینالی، کامران قاسم‌زاده و علیرضا بهروزسرند، «مدل‌سازی عملکرد غشای نانوکامپوزیتی گرافنی جهت جداسازی هیدروژن به کمک روش دینامیک سیالات محاسباتی»، مجلة مدل‌سازی در مهندسی، دورة 16، شمارة 55، زمستان 1397، صفحة 77- 86.
]3[ محمّد همّت اسفه، مجتبی بیگلری، سیف‌الله سعدالدین و سید هادی رستمیان، «ارزیابی تجربی خواص ترموفیزیکی، انتقال حرارت جابه‌جایی و افت فشار در نانوسیال آب- نانولوله کربنی چندجداره عامل‌دارشده»، مجلة مدل‌سازی در مهندسی، دورة 15، شمارة 48، بهار 1396، صفحة 73-84.
]4[ بهروز عبدی تهنه‌‌ و علی نادری‌، «ساختار جدید ترانزیستور اثر میدانی نانولوله کربنی تونلزنی با دوپینگ خطی در ناحیه درین: شبیه‌سازی عددی کوانتومی»، مجلة مدل‌سازی در مهندسی، دورة 16، شمارة 52، بهار 1397، صفحة 109-117.
[5] S. Michael Fuhrer , V. Nikhil Medhekar, "Dirac-point photocurrents due to the photothermoelectric effect in non-uniform graphene devices", Nature Nanotechnology, Vol. 15, February 2020, pp.241–243.
[6] C.H.A. Tsang, H. Huang, J. Xuan, H. Wang and D.Y.C. Leung, "Graphene materials in green energy applications: Recent development and future perspective", Renewable and Sustainable Energy Reviews, Vol. 120, March 2020, pp.109656.
[7] N.H. Van, M. Muruganathan, J. Kulothungan and H. Mizuta, "All Two-Dimensional Materials Three-Terminal Graphene Nanoelectromechanical Switch", Nanoscale, Vol. 10, April 2018, pp. 12349.
[8] Y. Qian, K.T. Lam, C. Lee and G. Liang, "The effects of interlayer mismatch on electronic properties of bilayer armchair graphene nanoribbons", Carbon, Vol. 50, April 2012, pp.1659.
[9] J. Zheng, P. Guo, Z. Ren, Z. Jiang, J. Bai and Z. Zhang, "Conductance fluctuations as a function of sliding motion in bilayer graphene nanoribbon junction: A first-principles investigation", Applied Physics Letters, Vol.101, August 2012, pp. 083101.
[10] Y. Xie, S. Cao, X. Wu, B.Y. Yu, L.Y. Chen and J.M. Zhang, "Density functional theory study of hydrogen sulfide adsorption onto transition metal-doped bilayer graphene using external electric fields", Physica E: Low-dimensional Systems and Nanostructures, Vol. 124, October 2020, pp. 114252.
[11] A.A. Shokri, and N. Salami, "Quantum transport of tunnel field effect transistors based on bilayer-graphene nanoribbon heterostructures", Physica E: Low-dimensional Systems and Nanostructures, Vol. 119, May 2020, pp. 113908.
[12] Z. He, C. Yu, Q. Liu, X. Song, X. Gao, J. Guo, C. Zhou, S. Cai and Z. Feng, "High temperature RF performances of epitaxial bilayer graphene field-effect transistors on SiC substrate" , Carbon, Vol. 164, August 2020, pp. 435-441.
[13] M. HuangP.V. Bakharev, Z.J. WangM. BiswalZ. Yang, S. JinB. WangH.J. ParkY. LiD. QuY. KwonX. ChenS.H. LeeM.G. WillingerW.J. YooZ. Lee and R.S. Ruoff, "Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil", Nature Nanotechnology, Vol. 15, January  2020, pp.289–295.
[14] Y.D. W. Zhou, J. Gao, X. Pan and Y. Li, "Fundament and Application of Graphdiyne in Electrochemical Energy", Accounts of Chemical Research, Vol. 53, No. 2, February 2020, pp. 459-469.
[15] X. Zhang, H. Wang, K. Wu, Q. Li, Z. Shao, Q. Yang, C. Chen, X. Cui, J. Chen and J. Wang, "Two-dimensional γ-graphyne for ultrafast nonlinear optical applications", Optical Materials Express, Vol. 10, 2020, pp. 293-301.
[16] G. Li, Y. Li, H. Liu, Y. Guo, Y. Lia and D. Zhua, "Architecture of graphdiyne nanoscale films", Chemical Communication, Vol. 46, January 2010, pp. 3256-3258.
[17] W. Wu, W. Guo and X.C. Zeng, "Intrinsic electronic and transport properties of graphyne sheets and nanoribbons", Nanoscale, Vol. 5, July 2013, pp. 9264 -9276.
[18] B. Bhattacharya, U. Sarkar and N. Seriani, "Electronic Properties of Homo and Hetero Bilayer Graphyne: The Idea of a Nanocapacitor", Journal of Physical Chemistry, Vol. 120, November 2016, pp. 26579–26587.
[19] S. Wu, Y. Yuan, H. Ai, J.Y. Lee and B. Kang, "Effects of Double-atom Vacancy on the Electronic Properties of Graphyne: A DFT Investigation", Physical Chemistry Chemical Physics, Vol. 20, August 2018, pp. 22739-22743.
[20] Y. Hang, W. Wen-Zhi, J. Yu and W.L. Guo, "Tuning the energy gap of bilayer α-graphyne by applying strain and electric field", Chinese Physics B, Vol. 25, December 2016, pp. 023102.
[21] O. Leenaerts, B. Partoens and F.M. Peeters, "Tunable double Dirac cone spectrum in bilayer α-graphyne", Applied Physics Letters, Vol.103, No. 1, July 2013, pp. 013105.
[22] D. Jariwala,  A. Srivastava and  P.M Ajayan, "Graphene Synthesis and Band Gap Opening", Journal of Nanoscience and Nanotechnology, Vol. 11, November 2011, pp. 6621-6641.
[23] Y. LiuM. BoC.Q. Sun and Y. Huang, "The Band-Gap Modulation of Graphyne Nanoribbons by Edge Quantum Entrapment",Nanomaterials, Vol. 8, February 2018, pp. 92.
[24] W. Koch and M.C. Holthaausen, A Chemist's Guide to Density Functional Theory, 2th ed, Wiley, NJ, USA, 2001.
[25] S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, 2th ed Cambridge, United Kingdom, 2005.
[26] J. Chen, K.S. Thygesen and K.W. Jacobsen, "Ab-initio non-equilibrium quantum transport and forces with the real space projector augmented wave method", Physical Review B, Vol. 85, April 2012, 155140.
[27] X. Xua and W.A. Goddard, "The extended Perdew-Burke-Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems", Journal of Chemical Physics, Vol. 121, No. 9, September 2004, pp. 4068.
[28] G.C. SolomonC. HerrmannT. Hansen, V. Mujica and M.A. Ratner, "Exploring local currents in molecular junctions", Nature Chemistry, Vol. 2, February 2010, pp.223–228.