[1] S. A. Kashani. H. K. Alidash. and H. S. Filabadi, " All-Graphene Nano-Ribbon FET Based Complete FPGA Design", ECS Journal of Solid State Science and Technology, Vol. 9 No. 3, pp.031004, 2020.
[2] مهناز ذاکری و امید افضل نژاد، "بررسی اثر زاویه کایرال بر کمانش محوری و پیچشی نانولوله های کربنی تک جداره
به کمک روش اجزا محدود "، نشریه مدلسازی در مهندسی، دوره 15، شماره 48، بهار 1396، صفحه 71- 61.
[3] احسان زمانی، فاطمه عباسپور و سجاد صیفوری، "مطالعه اثر ضربه نانوذرات بر نانولولههای کربنی دو جداره با استفاده از تئوری غیرمحلی الاستیسیته "، نشریه مدلسازی در مهندسی، دوره 17، شماره 58، پاییز 1398، صفحه 32- 32.
[4] J. Nilsson. A. C. Neto. F. Guinea. and N. M. R Peres, "Electronic properties of bilayer and multilayer graphene", Physical Review B, Vol. 78, No. 4, pp. 045405, 2008.
[5] K. S.Novoselov. A. K. Geim. S. V. Morozov. D. Jiang, Y. Zhang. S. V. Dubonos. I. V. Grigorieva. and A. A Firsov, "Electric field effect in atomically thin carbon films", science, Vol. 306, No. 5696, pp. 666-669, 2004.
[6] بهروز عبدی تهنه و علی نادری، "ساختار جدید ترانزیستور اثر میدانی نانو لوله کربنی تونلزنی با دوپینگ خطی در ناحیه
درین: شبیه سازیعددی کوانتومی "، نشریه مدلسازی در مهندسی، دوره 16، شماره 52، بهار 1397، صفحه 117- 109.
[7] M. Nayeri, P. Keshavarzian, and M. Nayeri, "High-Speed Ternary Half adder based on GNRFET", Journal of Nanoanalysis, Vol. 6, No. 3, pp.193-198, 2019.
[8] B. Sahu, H. Min, A. H. MacDonald, and S. K. Banerjee, "Energy gaps, magnetism and electric-field
effects in bilayer graphene nanoribbons", Vol. 78, pp. 045404, 2008.
[9] H. Sadeghi, M. T. Ahmadi, B. I. Ishak, M. Mousavi, and R. Ismail, "Ballistic conductance model of
bilayer graphene nanoribbon(BGN)", Journal of Computational and Theoretical Nanoscience, Vol. 8, pp.1993-1998, 2011.
[10] M. Freitag, "Graphene: nanoelectronics goes flat out".Nature nanotechnology, Vol. 3, No. 8, pp.455, 2008.
[11] M. R. Choudhury, Y. Yoon, J. Guo. and K. Mohanram, "Graphene nanoribbon FETs: Technology exploration for performance and reliability", IEEE transactions on nanotechnology, Vol. 10, No. 4, pp. 727-736, 2010.
[12] Y. Y. Chen, A. Rogachev, A. Sangai, G. Iannaccone, G. Fiori, and D. Chen, "A SPICE-compatible model of graphene nano-ribbon field-effect transistors enabling circuit-level delay and power analysis under process variation",Automation and Test in Europe Conference and Exhibition (DATE), pp. 1789-1794, 2013.
[13] T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, "Molecular doping of graphene, Nano letters", Vol. 8, No. 1, pp.173-177, 2008.
[14] M. Nayeri, P. Keshavarzian, and M. Nayeri, "Approach for MVL design based on armchair graphene nanoribbon field effect transistor and arithmetic circuits design", Microelectronics Journal, Vol. 92, pp.104599, 2019.
[15]K. L. Wong, M. W. Chuan, A. Hamzah, S. Rusli, N. E. Alias, C. S. Lim, and M. L. P Tan, "Carrier statistics of highly doped armchair graphene nanoribbons with edge disorder", Superlattices and Microstructures, Vol. 139, pp. 106404, 2020.
[16] M. Moradinasab, H. Nematian, M. Pourfath, M. Fathipour, and H. Kosina, "Analytical models of approximations for wave functions and energy dispersion in zigzag graphene nanoribbons", Journal of Applied Physics, Vol. 111, No. 7, pp.074318, 2012.
[17] K. Sugawara, T. Sato, S. Souma, T. Takahashi, and H. Suematsu,"Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy", Physical Review B, Vol. 73. No. 4, pp. 045124, 2006.
[18] M. Nayeri, P. Keshavarzian, and M. Nayeri, "A Novel Design of Quaternary Inverter Gate Based on GNRFET", International Journal of Nanoscience and Nanotechnology, Vol. 15, No. 3, pp.211-217, 2019.
[19] S. Singh, and I. Kaur," Bandgap engineering in armchair graphene nanoribbon of zigzag-armchair-zigzag based Nano-FET: A DFT investigation", Physica E: Low-dimensional Systems and Nanostructures, Vol. 118, pp.113960, 2020.
[20] M. Gholipour, Y. Y Chen, A. Sangai, and D. Chen, "Highly accurate SPICE-compatible modeling for single-and double-gate GNRFETs with studies on technology scaling", Proceedings of the conference on Design, Automation and Test in Europe, pp. 120, European Design and Automation Association, 2014.
[21] M. R. Choudhury, Y. Yoon, J. Guo, and K. Mohanram, "Graphene nanoribbon FETs: Technology exploration for performance and reliability", IEEE transactions on nanotechnology, Vol. 10, No. 4, pp.727-736, 2010.
[22] Y. Y. Chen, A. Sangai, A. Rogachev, M. Gholipour, G. Iannaccone, G. Fiori, and D. Chen, "A SPICE-compatible model of MOS-type graphene nano-ribbon field-effect transistors enabling gate-and circuit-level delay and power analysis under process variation", IEEE Transactions on Nanotechnology, Vol. 14, No. 6, pp.1068-1082, 2015.
[23] D. Gil-Tomàs, J. Gracia-Morán, L. J, Saiz-Adalid, P. J. Gil-Vicente", Fault Modeling of Graphene Nanoribbon FET Logic Circuits", Electronics, Vol. 8, No. 8, pp.851, 2019.
[24] E. Abiri, A. Darabi, and S. Salem, "Design of multiple-valued logic gates using gate-diffusion input for image processing applications", Computers and Electrical Engineering, Vol. 69, pp. 142-157, 2018.
[25] M. H. Moaiyeri, R. F. Mirzaee, A. Doostaregan, K. Navi, and O. Hashemipour, "A universal method for designing low-power carbon nanotube FET-based multiple-valued logic circuits", IET Computers and Digital Techniques, Vol. 7, No. 4, pp.167–181, 2013.
[26] M. H. Moaiyeri, and K. Navi, "Robust carbon nanotube field effect transistor-based penternary logic circuits", Journal of Computational and Theoretical Nanoscience, Vol. 11, No. 9, pp. 2055–62, 2014.