Design and simulation of Penternary adder based on GNRFET

Document Type : Power Article

Authors

1 Department of

2 Department of Electrical and engineering, Islamic Azad Yazd university, Yazd branch, Yazd, Iran.

Abstract

In this paper, the design of penternary circuits based on graphene nanoribbon FET (GNRFET) is presented. The employed logic of the penternary corresponds to the Galois logic. The HSPICE-compatible model and 15-nanometer technology have been used to simulate the graphene nanoribbon transistor. Accordingly, the proposed NAND and NOR penternary circuits are first, designed and simulated. The results show that these proposed circuits have a significant improvement in terms of speed and power consumption compared to their CNTFET counterparts. Then, the adder circuit as the main part of digital processors in integrated circuit design is proposed with penternary logic. The transient responses of the proposed circuits are accurate. Parameters such as power consumption,, delay and power-delay product are calculated. Evaluation of the results shows that the proposed adder circuit has the power-delay product (PDP) of 179.39 fJ at the supply voltage of 0.8 V and the operating frequency of 100 MHz.

Keywords


 
[1] S. A. Kashani. H. K. Alidash. and H. S. Filabadi, " All-Graphene Nano-Ribbon FET Based Complete FPGA Design", ECS Journal of Solid State Science and Technology, Vol. 9 No. 3, pp.031004, 2020.
[2] مهناز ذاکری و امید افضل نژاد، "بررسی اثر زاویه کایرال بر کمانش محوری و پیچشی نانولوله های کربنی تک جداره
به کمک روش اجزا محدود "، نشریه مدل‌سازی در مهندسی، دوره 15، شماره 48، بهار 1396، صفحه 71- 61.
[3]  احسان زمانی، فاطمه عباسپور و سجاد صیفوری، "مطالعه اثر ضربه نانوذرات بر نانولوله‌های کربنی دو جداره با استفاده از تئوری غیرمحلی الاستیسیته "، نشریه مدل‌سازی در مهندسی، دوره 17، شماره 58، پاییز 1398، صفحه 32- 32.
[4] J. Nilsson. A. C. Neto. F. Guinea. and N. M. R Peres, "Electronic properties of bilayer and multilayer graphene", Physical Review B, Vol. 78, No. 4, pp. 045405, 2008.
[5] K. S.Novoselov. A. K. Geim. S. V. Morozov. D. Jiang, Y. Zhang. S. V. Dubonos. I. V. Grigorieva. and A. A Firsov, "Electric field effect in atomically thin carbon films", science, Vol. 306, No. 5696, pp. 666-669, 2004.
[6]  بهروز عبدی تهنه و علی نادری، "ساختار جدید ترانزیستور اثر میدانی نانو لوله کربنی تونلزنی با دوپینگ خطی در ناحیه
درین: شبیه سازیعددی کوانتومی "، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 52، بهار 1397، صفحه 117- 109.
[7] M. Nayeri, P. Keshavarzian, and M. Nayeri, "High-Speed Ternary Half adder based on GNRFET", Journal of Nanoanalysis, Vol. 6, No. 3, pp.193-198, 2019.
[8] B. Sahu, H. Min, A. H. MacDonald, and S. K. Banerjee, "Energy gaps, magnetism and electric-field
effects in bilayer graphene nanoribbons", Vol. 78, pp. 045404, 2008.
[9] H. Sadeghi, M. T. Ahmadi, B. I. Ishak, M. Mousavi, and R. Ismail, "Ballistic conductance model of
bilayer graphene nanoribbon(BGN)", Journal of Computational and Theoretical Nanoscience, Vol. 8, pp.1993-1998, 2011.
[10] M. Freitag, "Graphene: nanoelectronics goes flat out".Nature nanotechnology, Vol. 3, No. 8, pp.455, 2008.
[11] M. R. Choudhury, Y. Yoon, J. Guo. and K. Mohanram, "Graphene nanoribbon FETs: Technology exploration for performance and reliability", IEEE transactions on nanotechnology, Vol. 10, No. 4, pp. 727-736, 2010.
[12] Y. Y. Chen, A. Rogachev, A. Sangai, G. Iannaccone, G. Fiori, and D. Chen, "A SPICE-compatible model of graphene nano-ribbon field-effect transistors enabling circuit-level delay and power analysis under process variation",Automation and Test in Europe Conference and Exhibition (DATE), pp. 1789-1794, 2013.
[13] T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, "Molecular doping of graphene, Nano letters", Vol. 8, No. 1, pp.173-177, 2008.
[14] M. Nayeri, P. Keshavarzian, and M. Nayeri, "Approach for MVL design based on armchair graphene nanoribbon field effect transistor and arithmetic circuits design", Microelectronics Journal, Vol. 92, pp.104599, 2019.
[15]K. L. Wong, M. W. Chuan, A. Hamzah, S. Rusli, N. E. Alias, C. S. Lim, and M. L. P Tan, "Carrier statistics of highly doped armchair graphene nanoribbons with edge disorder", Superlattices and Microstructures, Vol. 139, pp. 106404, 2020.
 [16] M. Moradinasab, H. Nematian, M. Pourfath, M. Fathipour, and H. Kosina, "Analytical models of approximations for wave functions and energy dispersion in zigzag graphene nanoribbons", Journal of Applied Physics, Vol. 111, No. 7, pp.074318, 2012.
[17] K. Sugawara, T. Sato, S. Souma, T. Takahashi, and H. Suematsu,"Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy", Physical Review B, Vol. 73. No. 4, pp. 045124, 2006.
[18] M. Nayeri, P. Keshavarzian, and M. Nayeri, "A Novel Design of Quaternary Inverter‎ Gate Based on GNRFET", International Journal of Nanoscience and Nanotechnology, Vol. 15, No. 3, pp.211-217, 2019.
[19] S. Singh, and I. Kaur," Bandgap engineering in armchair graphene nanoribbon of zigzag-armchair-zigzag based Nano-FET: A DFT investigation", Physica E: Low-dimensional Systems and Nanostructures, Vol. 118, pp.113960, 2020.
[20] M. Gholipour, Y. Y Chen, A. Sangai, and D. Chen, "Highly accurate SPICE-compatible modeling for single-and double-gate GNRFETs with studies on technology scaling", Proceedings of the conference on Design, Automation and Test in Europe, pp. 120, European Design and Automation Association, 2014.
[21] M. R. Choudhury, Y. Yoon, J. Guo, and K. Mohanram, "Graphene nanoribbon FETs: Technology exploration for performance and reliability", IEEE transactions on nanotechnology, Vol. 10, No. 4, pp.727-736, 2010.
[22] Y. Y. Chen, A. Sangai, A. Rogachev, M. Gholipour, G. Iannaccone, G. Fiori, and D. Chen, "A SPICE-compatible model of MOS-type graphene nano-ribbon field-effect transistors enabling gate-and circuit-level delay and power analysis under process variation", IEEE Transactions on Nanotechnology, Vol. 14, No. 6, pp.1068-1082, 2015.
[23] D. Gil-Tomàs, J. Gracia-Morán, L. J, Saiz-Adalid, P. J. Gil-Vicente", Fault Modeling of Graphene Nanoribbon FET Logic Circuits", Electronics, Vol. 8, No. 8, pp.851, 2019.
 [24] E. Abiri, A. Darabi, and S. Salem, "Design of multiple-valued logic gates using gate-diffusion input for image processing applications", Computers and Electrical Engineering, Vol. 69, pp. 142-157, 2018.
[25] M. H. Moaiyeri, R. F. Mirzaee, A. Doostaregan, K. Navi, and O. Hashemipour, "A universal method for designing low-power carbon nanotube FET-based multiple-valued logic circuits", IET Computers and Digital Techniques, Vol. 7, No. 4, pp.167–181, 2013.
[26] M. H. Moaiyeri, and K. Navi, "Robust carbon nanotube field effect transistor-based penternary logic circuits", Journal of Computational and Theoretical Nanoscience, Vol. 11, No. 9, pp. 2055–62, 2014.