Assessment of thermocline zone’s effective parameters on thermal energy storage systems

Document Type : Mechanics article

Authors

Mechanical Engineering, Department of Engineering, University of Birjand

Abstract

Chilled water thermal energy systems can provide alternatives for the lack of required cooling energy demand. These systems could cover the gap between the energy generations and demand period especially when the available cooling systems such as chillers and cooling towers cannot provide the required cooling energy demand. In the current study energy analysis is done based on the mathematical model of thermally stratified chilled water storage systems. In this paper a cylindrical tank is considered as an environment with thermally stratified storage system. Using this one dimensional transient conduction model, temperature distribution in the storage water, thermocline zone and the wall are presented and important parameters has been investigated. Analyses have been done in three different groups: tank material, dimensions and using insulation. The results have shown although tank dimensions have the minimum influence on temperature distribution but the other parameters are more effective especially the influence of tank insulation.

Keywords


 
[1] L. Yang, H. Yan and J.C. Lam, "Thermal comfort and building energy consumption implications–a review", Applied energy, Vol. 115, 2014, pp. 164-173.
[2] L. Pérez-Lombard, J. Ortiz and C. Pout, "A review on buildings energy consumption information", Energy and buildings, Vol. 40, No. 3, 2008, pp. 394-398.
[3] B. Zalba, J.M. Marın, L.F. Cabeza and H. Mehling, "Review on thermal energy storage with phase change: materials, heat transfer analysis and applications", Applied thermal engineering, Vol. 23, No. 3, 2003, pp. 251-283.
[4] D. Gibb, M. Johnson, J. Romaní, J. Gasia, L.F. Cabeza and A. Seitz, "Process integration of thermal energy storage systems–Evaluation methodology and case studies", Applied energy, Vol. 230, 2018, pp. 750-760.
[5] S. Hasnain, "Review on sustainable thermal energy storage technologies, Part II: cool thermal storage", Energy conversion and management, Vol. 39, No. 11, 1998, pp. 1139-1153.
[6] J. Nelson, A. Balakrishnan and S.S. Murthy, "Parametric studies on thermally stratified chilled water storage systems", Applied Thermal Engineering, Vol. 19, No. 1, 1999, pp. 89-115.
[7] M.A. Rosen, "The exergy of stratified thermal energy storages", Solar energy, Vol. 71, No. 3, 2001, pp. 173-185.
[8] I. Dincer, "On thermal energy storage systems and applications in buildings", Energy and buildings, Vol. 34, No. 4, 2002, pp. 377-388.
[9] K. Osman, S.M.N. Al Khaireed, M.K. Ariffin and M.Y. Senawi, "Dynamic modeling of stratification for chilled water storage tank", Energy Conversion and Management, Vol. 49, No. 11, 2008, pp. 3270-3273.
[10] M.Y. Haller, C.A. Cruickshank, W. Streicher, S.J. Harrison, E. Andersen and S. Furbo, "Methods to determine stratification efficiency of thermal energy storage processes–review and theoretical comparison", Solar Energy, Vol. 83, No. 10, 2009, pp. 1847-1860.
]11[ زهره شیخ خوزانی، خسرو حسینی و مهدی رحیمیان، «مدل‌سازی بهره‌برداری از مخازن چندمنظوره به روش پویایی سیستم»، مجلة مدل‌سازی در مهندسی، دورة 8، شمارة 21، 1389، صفحة 57-65.
[12] C. Rathgeber, E. Lävemann and A. Hauer, "Economic top–down evaluation of the costs of energy storages—A simple economic truth in two equations", Journal of Energy Storage, Vol. 2, 2015, pp. 43-46.
[13]Z.J. Yu, G. Huang, F. Haghighat, H. Li and G. Zhang, "Control strategies for integration of thermal energy storage into buildings: State-of-the-art review", Energy and Buildings, Vol. 106, 2015, pp. 203-215.
[14] B. Cui, D.-c. Gao, F. Xiao and S. Wang, "Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings", Applied Energy, Vol. 201, 2017, pp. 382-396.
]15[ سید علیرضا ذوالفقاری،  مهران سعادتی‌نسب و الهه نوروزی جاجرم، «بررسی تأثیر استفاده از نماهای دوپوسته سبز بر مصرف انرژی ساختمان‌های بلندمرتبه در شرایط اقلیمی تهران»، مجلة مدل سازی در مهندسی، دورة 17، شمارة 56، 1398، صفحة 51-61.
[16] X. Song, L. Liu, T. Zhu, S. Chen and Z. Cao, "Study of economic feasibility of a compound cool thermal storage system combining chilled water storage and ice storage", Applied Thermal Engineering, Vol. 133, 2018, pp. 613-621.
[17] J. Raccanello, S. Rech and A. Lazzaretto, "Simplified dynamic modeling of single-tank thermal energy storage systems", Energy, 2019.
[18] P. Feng, B. Zhao and R. Wang, "Thermophysical heat storage for cooling, heating, and power generation: A review", Applied Thermal Engineering, Vol. 166, 2020, p. 114728.
]19[ صاحبه یوسفی، مسعود مفرحی و حسین رهیده، «مدل‌سازی فرایند پر شدن و تخلیة مخزن ذخیره‌سازی گاز طبیعی جذب‌شده»،‌ مجلة مدل‌سازی در مهندسی، دورة 16، شمارة 54، 1397، صفحة 309-326.
[20] J.S. Caldwell and W.P. Bahnfleth, "Identification of mixing effects in stratified chilled-water storage tanks by analysis of time series temperature data", ASHRAE Transactions, Vol. 104, 1998, p. 366.
[21] S. Alizadeh, "An experimental and numerical study of thermal stratification in a horizontal cylindrical solar storage tank", Solar Energy, Vol. 66, No. 6, 1999, pp. 409-421.
[22] M.A. Rosen, R. Tang and I. Dincer, "Effect of stratification on energy and exergy capacities in thermal storage systems", International Journal of Energy Research, Vol. 28, No. 2, 2004, pp. 177-193.
[23] A. Bejan, Convection heat transfer, John wiley & sons, 2013.
[24] Y. Han, R. Wang and Y. Dai, "Thermal stratification within the water tank", Renewable and Sustainable Energy Reviews, Vol. 13, No. 5, 2009, pp. 1014-1026.
[25] A. Lake and B. Rezaie, "Energy and exergy efficiencies assessment for a stratified cold thermal energy storage", Applied energy, Vol. 220, 2018, pp. 605-615.