[1] N. Pamme, “Continuous flow separations in microfluidic devices”, Lab Chip, Vol. 7, No. 12, 2007, pp. 1644–1659.
[2] E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research”, Nature, Vol. 507, 2014.
[3] A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation”, Medical and Biological Engineering and Computing, Vol. 48, No. 10, Oct. 2010, pp. 999–1014.
[4] B. Çetin and D. Li, “Dielectrophoresis in microfluidics technology”, Electrophoresis, Vol. 32, No. 18, 2011, pp. 2410–2427.
[5] J. G. Kralj, M. T. W. Lis, M. A. Schmidt, and K. F. Jensen, “Continuous dielectrophoretic size-based particle sorting”, Analytical Chemistry, Vol. 78, No. 14, 2006, pp. 5019–5025.
[6] M. Li, W. H. Li, J. Zhang, G. Alici, and W. Wen, “A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation”, Journal of Physics D: Applied Physics, Vol. 47, No. 6, 2014.
[7] F. Petersson, A. Lena, A. Swa, and T. Laurell, “Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation”, Vol. 79, No. 14, 2002, pp. 5117–5123.
[8] T. Laurell, F. Petersson, and A. Nilsson, “Chip integrated strategies for acoustic separation and manipulation of cells and particles”, Chemical Society Reviews, Vol. 36, No. 3, 2007, pp. 492–506.
[9] Z. Wang and J. Zhe, “Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves”, Lab on a Chip, Vol. 11, No. 7, 2011, pp. 1280–1285.
[10] S. Miltenyi, W. Müller, W. Weichel, and A. Radbruch, “High gradient magnetic cell separation with MACS”, Cytometry, Vol. 11, No. 2, 1990, pp. 231–238.
[11] T. P. Forbes and S. P. Forry, “Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells”, Lab on a Chip, Vol. 12, No. 8, 2012, pp. 1471–1479.
[12] M. Hejazian, W. Li, and N. T. Nguyen, “Lab on a chip for continuous-flow magnetic cell separation”, Lab on a Chip, Vol. 15, No. 4, 2015, pp. 959–970.
[13] D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels”, Proceedings of the National Academy of Sciences, Vol. 104, No. 48, 2007, pp. 18892–18897.
[14] D. Di Carlo, “Inertial microfluidics”, Lab on a Chip, Vol. 9, No. 21, 2009, pp. 3038–3046.
[15] J. M. Martel and M. Toner, “Inertial Focusing in Microfluidics”, Annual Review of Biomedical Engineering., Vol. 16, No. 1, 2014, pp. 371–396.
[16] H. Amini, W. Lee, and D. Di Carlo, “Inertial microfluidic physics”, Lab on a Chip, Vol. 14, No. 15, 2014, pp. 2739–2761.
[17] K. Loutherback, K. S. Chou, J. Newman, J. Puchalla, R. H. Austin, and J. C. Sturm, “Improved performance of deterministic lateral displacement arrays with triangular posts”, Microfluid and Nanofluidics, Vol. 9, No. 6, 2010, pp. 1143–1149.
[18] L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, “Continuous Particle Separation Through Deterministic Lateral Displacement”, Science 80 goes monthly, Vol. 304, No. 5673, 2004, pp. 987–990.
[19] D. Huh, Y. Ling, J. H. Bahng, H. H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg, and Sh, Takayama, “A Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification”, Analytical Chemistry, Vol. 79, No. 4, 2007, pp. 1369–1376.
[20] A. T. Ciftlik, M. Ettori, and M. A. M. Gijs, “High Throughput-Per-Footprint Inertial Focusing”, Small, Vol. 9, No. 16, 2013, pp. 2764–2773.
[21] G. Segré and A. Silberberg, “Radial particle displacements in poiseuille flow of suspensions”, Nature, Vol. 189, No. 4760, 1961, pp. 209–210.
[22] F. T. Smith, “Pulsatile flow in curved pipes”, Journal of Fluid Mechanics, Vol. 71, No. 1, 1975, pp. 15–42.
[23] M. G. Lee, S. Choi, and J. K. Park, “Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device”, Lab on a Chip, Vol. 9, No. 21, 2009, pp. 3155–3160.
[24] H. Amini, E. Solier, M. Masaeli, Y. Xie, B. Ganapathysubramanian, H. A. Stone, and D. D. Carlo, “Engineering fluid flow using sequenced microstructures,” National Commun., Vol. 4, No. May, 2013, pp. 1–8.
[25] محمد محسن شاه مردان، نوروزی و امین شهبانی ظهیری، "بررسی عددی تاًثیر گردابهها بر روی افت فشار و تلفات جریان در داخل کانال با انبساط تدریجی صفحهای"، نشریه مدل سازی در مهندسی, 15دوره، شماره 48، 1396، صفحه 60-45.
[26] مهدی اژدری مقدم و مهنا تاج نسایی، " مدلسازی عددی سلولهای جریان ثانویه در کانالهای ذوزنقهای با زبری یکنواخت"، نشریه مدل سازی در مهندسی، دوره 8، شماره 20، 1398، صفحه 70-57.
[27] A. J. Mach and D. Di Carlo, “Continuous scalable blood filtration device using inertial microfluidics”, Biotechnology and Bioengineering, Vol. 107, No. 2, Jun. 2010, pp. 302–311.
[28] J. Zhou, P. V. Giridhar, S. Kasper, and I. Papautsky, “Modulation of aspect ratio for complete separation in an inertial microfluidic channel”, Lab on a Chip, Vol. 13, No. 10, 2013, pp. 1919–1929.
[29] H. W. Hou, M. E. Warkiani, B. L, Khoo, Z. R. Li, R. A. Soo, D. S. W. Tan, W. T. Lim, J. Han, A. A. S. Bhagat ,and Ch, T. Lim, “Isolation and retrieval of circulating tumor cells using centrifugal forces”, Scientific Reports, Vol. 3, 2013, pp. 1–8.
[30] M. G. Lee, S. Choi, and J. K. Park, “Inertial separation in a contraction-expansion array microchannel” Journal of Chromatography A, Vol. 1218, No. 27, Jul. 2011, pp. 4138–4143.
[31] M. G. Lee et al., “Inertial blood plasma separation in a contraction-expansion array microchannel”, Appl. Phys. Lett., Jun. 2011, Vol. 98, No. 25.
[32] J. S. Park, S. H. Song, and H. Il Jung, “Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels”, Lab on a Chip, Vol. 9, No. 7, 2009, pp. 939–948.
[33] E. Sollier, D. E. Go, J. Che, D. R. Gossett, S. O. Byrne, W. M. Weaver, N. Kummer, M. Rettig, J. Goldman, N. Nickols, S. McCloskey, R. P. Kulkarni, and D. D. Carlo, “Size-selective collection of circulating tumor cells using Vortex technology”, Lab on a Chip, Vol. 14, No. 1, 2014, pp. 63–77.
[34] یوسف بیناباجی و بهمن وحیدی، "تحلیل عددی اثر تغییرات شتاب گرانشی بر نشست ذرات معلق در مسیرهای هوایی نای-برونشی انسان: شبیه سازی محاسباتی سه بعدی"، نشریه مدل سازی در مهندسی,شماره 59، 1398، صفحه 128-109.
[35] سجاد اسلامی و مهدی محسنی، "اثر مدل توربولانس بر شبیه سازی عددی جریان آشفته نانوسیال در یک لوله افقی"، نشریه مدل سازی در مهندسی، دوره 17، شماره 58، 1398، صفحه 293-279.
[36] K. V. Sharp and R. J. Adrian, “Transition from laminar to turbulent flow in liquid filled microtubes”, Experiments in Fluids, Vol. 36, No. 5, 2004, pp. 741–747.
[37] S. I. Rubinow and J. B. Keller, “The transverse force on a spinning sphere moving in a viscous fluid”, Journal of Fluid Mechanics, Vol. 11, No. 3, 1961, pp. 447–459.
[38] P. G. Saffman, “The lift force on a small shpere in a slow shear flow”, Journal of Fluid Mechanics, Vol. 22, 1965, pp. 385–400.
[39] D. Di Carlo, J. F. Edd, K. J. Humphry, H. A. Stone, and M. Toner, “Particle segregation and dynamics in confined flows,” Physical Review Letters, 2009, Vol. 102, No. 9.
[40] B. P. Ho and L. G. Leal, “Inertial migration of rigid spheres in two-dimensional unidirectional flows”, Journal of Fluid Mechanics, Vol. 65, No. 2, 1974, pp. 365–400.
[41] مازیار دهقان، مصطفی میرزایی، محمدصادق ولی پور و سیفالله سعدالدین، "جریان سیال غیر نیوتنی بر روی مرز با سرعت متغیر و در شرایط ناپایا؛ ارائه متغیر تشابهی و روش حل نوین"، نشریه مدل سازی در مهندسی، دوره 12، شماره 39، 1393، صفحه 122-113.
[42] G. Mach, C. Sherif, U. Windberger, R. Plasenzotti, and A. Gruber, “A Non Newtonian Model for Blood Flow behind a Flow Diverting Stent”, 2016, pp. 3–6.
[43] R. Rasooli and B. Çetin, “Assessment of Lagrangian Modeling of Particle Motion in a Spiral Microchannel for Inertial Microfluidics”, Micromachines, Vol. 9, No. 9, Aug. 2018, p. 433.