Investigation of effective parameters on capturing particles by secondary flows in rectangular microchannels

Document Type : Mechanics article

Authors

1 Imam Khomeini International University, Qazvin, Iran

2 Electrical Engineering Department, Imam Khomeini International University, Qazvin, Iran

Abstract

In recent years, inertial microfluidics (the use of inertial forces in microchannels) have attracted much attention aiming particle separation. The advantage of this method over other methods of separation and enrichment is its high-throughput performance and inexpensiveness. In the present study, the purpose of enriching the fluid with particles greater than 15 microns in diameter accomplished by designing a rectangular microchannel with an array of contraction-expansion regions in which expansion regions (reservoirs) had the task of trapping larger particles. By using the finite element method and by solving the Navier-Stokes equations, streamlines and vortex shapes are obtained. It was observed that for inlet flow rates in the range of 0.25 to 0.5 milliliters per minute, the highest capture efficiency for particles larger than 10 microns in diameter occurred near 0.35 milliliters per minute. The effect of parameters such as channel height, number of reservoirs and the initial length of the contraction region on the capture efficiency was also measured. Finally, in order to approach the practical applications, the effect of viscosity change due to replacement of blood (Non-Newtonian fluid) instead of water was also investigated, which resulted in the formation of vortices at higher flow rates. In general, vortices created in the expansion region, whose intensity depends on the parameters mentioned above, play a dominant role in particle separation, while inertial lift forces appear as an initial guide

Keywords


 
[1] N. Pamme, “Continuous flow separations in microfluidic devices”, Lab Chip, Vol. 7, No. 12, 2007, pp. 1644–1659.
[2] E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research”, Nature, Vol. 507, 2014.
[3] A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation”, Medical and Biological Engineering and Computing, Vol. 48, No. 10, Oct. 2010, pp. 999–1014.
[4] B. Çetin and D. Li, “Dielectrophoresis in microfluidics technology”, Electrophoresis, Vol. 32, No. 18, 2011, pp. 2410–2427.
[5] J. G. Kralj, M. T. W. Lis, M. A. Schmidt, and K. F. Jensen, “Continuous dielectrophoretic size-based particle sorting”, Analytical Chemistry, Vol. 78, No. 14, 2006, pp. 5019–5025.
[6] M. Li, W. H. Li, J. Zhang, G. Alici, and W. Wen, “A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation”, Journal of Physics D: Applied Physics, Vol. 47, No. 6, 2014.
[7] F. Petersson, A. Lena, A. Swa, and T. Laurell, “Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation”, Vol. 79, No. 14, 2002, pp. 5117–5123.
[8] T. Laurell, F. Petersson, and A. Nilsson, “Chip integrated strategies for acoustic separation and manipulation of cells and particles”, Chemical Society Reviews, Vol. 36, No. 3, 2007, pp. 492–506.
[9] Z. Wang and J. Zhe, “Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves”, Lab on a Chip, Vol. 11, No. 7, 2011, pp. 1280–1285.
[10] S. Miltenyi, W. Müller, W. Weichel, and A. Radbruch, “High gradient magnetic cell separation with MACS”, Cytometry, Vol. 11, No. 2, 1990, pp. 231–238.
[11] T. P. Forbes and S. P. Forry, “Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells”, Lab on a Chip, Vol. 12, No. 8, 2012, pp. 1471–1479.
[12] M. Hejazian, W. Li, and N. T. Nguyen, “Lab on a chip for continuous-flow magnetic cell separation”, Lab on a Chip, Vol. 15, No. 4, 2015, pp. 959–970.
[13] D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels”, Proceedings of the National Academy of Sciences, Vol. 104, No. 48, 2007, pp. 18892–18897.
[14] D. Di Carlo, “Inertial microfluidics”, Lab on a Chip, Vol. 9, No. 21, 2009, pp. 3038–3046.
[15] J. M. Martel and M. Toner, “Inertial Focusing in Microfluidics”, Annual Review of Biomedical Engineering., Vol. 16, No. 1, 2014, pp. 371–396.
[16] H. Amini, W. Lee, and D. Di Carlo, “Inertial microfluidic physics”, Lab on a Chip, Vol. 14, No. 15, 2014, pp. 2739–2761.
[17] K. Loutherback, K. S. Chou, J. Newman, J. Puchalla, R. H. Austin, and J. C. Sturm, “Improved performance of deterministic lateral displacement arrays with triangular posts”, Microfluid and Nanofluidics, Vol. 9, No. 6, 2010, pp. 1143–1149.
[18] L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, “Continuous Particle Separation Through Deterministic Lateral Displacement”, Science 80 goes monthly, Vol. 304, No. 5673, 2004, pp. 987–990.
[19] D. Huh, Y. Ling, J. H. Bahng, H. H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg, and Sh, Takayama, “A Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification”, Analytical Chemistry, Vol. 79, No. 4, 2007, pp. 1369–1376.
[20] A. T. Ciftlik, M. Ettori, and M. A. M. Gijs, “High Throughput-Per-Footprint Inertial Focusing”, Small, Vol. 9, No. 16, 2013, pp. 2764–2773.
[21] G. Segré and A. Silberberg, “Radial particle displacements in poiseuille flow of suspensions”, Nature, Vol. 189, No. 4760, 1961, pp. 209–210.
[22] F. T. Smith, “Pulsatile flow in curved pipes”, Journal of Fluid Mechanics, Vol. 71, No. 1, 1975, pp. 15–42.
[23] M. G. Lee, S. Choi, and J. K. Park, “Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device”, Lab on a Chip, Vol. 9, No. 21, 2009, pp. 3155–3160.
[24] H. Amini, E. Solier, M. Masaeli, Y. Xie, B. Ganapathysubramanian, H. A. Stone, and D. D. Carlo, “Engineering fluid flow using sequenced microstructures,” National Commun., Vol. 4, No. May, 2013, pp. 1–8.
[25] محمد محسن شاه مردان، نوروزی و امین شهبانی ظهیری، "بررسی عددی تاًثیر گردابه‌ها بر روی افت فشار و تلفات جریان در داخل کانال با انبساط تدریجی صفحه‌ای‏"، نشریه مدل سازی در مهندسی, 15دوره، شماره 48، 1396، صفحه 60-45.
[26] مهدی اژدری‏ مقدم و مهنا تاج‏ نسایی، " مدل‏سازی عددی سلول‏های جریان ثانویه در کانال‏های ذوزنقه‏ای با زبری یکنواخت"، نشریه مدل سازی در مهندسی، دوره 8، شماره 20، 1398، صفحه 70-57.
[27] A. J. Mach and D. Di Carlo, “Continuous scalable blood filtration device using inertial microfluidics”, Biotechnology and Bioengineering, Vol. 107, No. 2, Jun. 2010, pp. 302–311.
[28] J. Zhou, P. V. Giridhar, S. Kasper, and I. Papautsky, “Modulation of aspect ratio for complete separation in an inertial microfluidic channel”, Lab on a Chip, Vol. 13, No. 10, 2013, pp. 1919–1929.
[29] H. W. Hou, M. E. Warkiani, B. L, Khoo, Z. R. Li, R. A. Soo, D. S. W. Tan, W. T. Lim, J. Han, A. A. S. Bhagat ,and Ch, T. Lim, “Isolation and retrieval of circulating tumor cells using centrifugal forces”, Scientific Reports, Vol. 3, 2013, pp. 1–8.
[30] M. G. Lee, S. Choi, and J. K. Park, “Inertial separation in a contraction-expansion array microchannel” Journal of Chromatography A, Vol. 1218, No. 27, Jul. 2011, pp. 4138–4143.
[31] M. G. Lee et al., “Inertial blood plasma separation in a contraction-expansion array microchannel”, Appl. Phys. Lett., Jun. 2011, Vol. 98, No. 25.
[32] J. S. Park, S. H. Song, and H. Il Jung, “Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels”, Lab on a Chip, Vol. 9, No. 7, 2009, pp. 939–948.
[33] E. Sollier, D. E. Go, J. Che, D. R. Gossett, S. O. Byrne, W. M. Weaver, N. Kummer, M. Rettig, J. Goldman, N. Nickols, S. McCloskey, R. P. Kulkarni, and D. D. Carlo, “Size-selective collection of circulating tumor cells using Vortex technology”, Lab on a Chip, Vol. 14, No. 1, 2014, pp. 63–77.
[34] یوسف بیناباجی و بهمن وحیدی، "تحلیل عددی اثر تغییرات شتاب گرانشی بر نشست ذرات معلق در مسیرهای هوایی نای-برونشی انسان: شبیه سازی محاسباتی سه بعدی"، نشریه مدل سازی در مهندسی,شماره 59، 1398، صفحه 128-109.
[35] سجاد اسلامی و مهدی محسنی، "اثر مدل توربولانس بر شبیه سازی عددی جریان آشفته نانوسیال در یک لوله افقی"، نشریه مدل سازی در مهندسی، دوره 17، شماره 58، 1398، صفحه 293-279.
[36] K. V. Sharp and R. J. Adrian, “Transition from laminar to turbulent flow in liquid filled microtubes”, Experiments in Fluids, Vol. 36, No. 5, 2004, pp. 741–747.
[37] S. I. Rubinow and J. B. Keller, “The transverse force on a spinning sphere moving in a viscous fluid”, Journal of Fluid Mechanics, Vol. 11, No. 3, 1961, pp. 447–459.
[38] P. G. Saffman, “The lift force on a small shpere in a slow shear flow”, Journal of Fluid Mechanics, Vol. 22, 1965, pp. 385–400.
[39] D. Di Carlo, J. F. Edd, K. J. Humphry, H. A. Stone, and M. Toner, “Particle segregation and dynamics in confined flows,” Physical Review Letters, 2009, Vol. 102, No. 9.
[40] B. P. Ho and L. G. Leal, “Inertial migration of rigid spheres in two-dimensional unidirectional flows”, Journal of Fluid Mechanics, Vol. 65, No. 2, 1974, pp. 365–400.
[41] مازیار دهقان، مصطفی میرزایی، محمدصادق ولی پور و سیف‌الله سعدالدین، "جریان سیال غیر نیوتنی بر روی مرز با سرعت متغیر و در شرایط ناپایا؛ ارائه متغیر تشابهی و روش حل نوین"، نشریه مدل سازی در مهندسی، دوره 12، شماره 39، 1393، صفحه 122-113.
[42] G. Mach, C. Sherif, U. Windberger, R. Plasenzotti, and A. Gruber, “A Non Newtonian Model for Blood Flow behind a Flow Diverting Stent”, 2016, pp. 3–6.
[43] R. Rasooli and B. Çetin, “Assessment of Lagrangian Modeling of Particle Motion in a Spiral Microchannel for Inertial Microfluidics”, Micromachines, Vol. 9, No. 9, Aug. 2018, p. 433.