Design and Implementation of depth environmental simulator for hardware in the loop laboratory of Autonomous Underwater Vehicle

Document Type : Power Article

Authors

1 1. Master of Guidance and Control, North Institute of Science & Technology, Malek ashtar University of Technology, Iran

2 2. Master of Manufacturing, North Institute of Science & Technology, Malek ashtar University of Technology

3 3. Master of communication, North Institute of Science & Technology, Malek ashtar University of Technology

4 4. Master of Electronic, North Institute of Science & Technology, Malek ashtar University of Technology

Abstract

The potential capabilities of Autonomous Underwater Vehicle (AUV) compared to traditional tools and equipment have led to increased attention and use of underwater vehicles in various commercial, military, and research fields. The manufacture and development of an offshore operational platform require the design of a complete and expensive system of a maritime laboratory in order for evaluating and validating the characteristics and performance of the integrated system and its subsystems. Modeling can be a cost-effective tool for conducting tests, verifying and certifying components and performance of hardware and software, performing missions, and thus reducing potential errors in marine tests and missions. These goals can be achieved through a relatively accurate dynamic simulation and modeling of equipment and environmental conditions inside the hardware in the loop (HIL) laboratory. The purpose of this paper is to provide real-time modeling and implement a physics-based depth environmental simulator for an AUV to equip the HIL laboratory. Validation of the performance of the depth environmental simulator in the dynamic bed of six degrees of freedom of an Autonomous Underwater Vehicle crawler has been done in real-time. The results indicate that the output of the depth environmental mechanism matches the measured depth of the field experiment at sea and there is no delay and bias between the real and simulated signal.

Keywords


[1] F. Song, P. E. An, and A. Folleco, "Modeling and Simulation of Autonomous Underwater Vehicles: Design and Implementation", Institute of Electrical and Electronics Engineers Journal of Oceanic Engineering, Vol. 28, No. 2, APRIL 2003.
[2] B. Jouvencel, L. Lapierre, and O. Parodi, "Hardware-in-the-loop simulators for multiple vehicle scenario: survey on existing solutions and proposal of a new architecture", Intelligent Robots and Systems, Oct 2009, St. Louis, MO, United States. institute of electrical and electronics engineers, 2009, pp.225-230.
[3] D. Gracanin, K. P. Valavanis, and Maja Matijasevic, "Virtual Environment Testbed for Autonomous Underwater Vehicles", Control Engineering Practice,Vol. 6 , 1998, pp. 653-660.
[4] R. P. Kornfeld, R. Prakash, A. S. Devereaux, M. E. Greco, C. C. Harmon, and D. M. Kipp, "Verification and Validation of the Mars Science Laboratory/Curiosity Rover Entry, Descent, and Landing System", Journal of Spacecraft and Rockets, Vol. 51, No. 4, July–August 2014.
[5] J. L. D. Dantas, and E. A. D. Barros, "A Real-Time Simulator for AUV Development," 20th International Congress of Mechanical Engineering November 15-20, 2009, Gramado, RS, Brazil.
[6] S. Louis, D. Andreu, K. G. Dejean, and L. Lapierre, "HIL Simulator for AUV with Contract", Control Architectures of Robots, Jun 2015, Lyon, France.
[7] D. P. Brutzman, Y. Kanayama and M. J. Zyda, "Integrated Simulation for Rapid Development of Autonomous Underwater Vehicles", Presented at the Institute of Electrical and Electronics Engineers Oceanic Engineering Society Autonomous Underwater Vehicle (AUV) 92 Conference, Washington DC, June 4-5, 1992, pp. 3-10.
[8] H. C. Brown, A. Kim, and R. M. Eustice, "An Overview of Autonomous Underwater Vehicle Research and Testbed at PeRL", Marine Technology Society Journal, May 2009.
[9] J. Y. Park, B. H. Jun, P. M. Lee, and J. Oh, "Development of Test-Bed AUV ‘ISiMI’ and Underwater Experiments on Free Running and Vision Guided Docking", Underwater Vehicles, Book edited by: Alexander V. Inzartsev, ISBN 978-953-7619-49-7, pp. 582, December 2008, I-Tech, Vienna, Austria.
[10] A. Vasilijevic, B. Borovic, and Z. Vukic, “Underwater Vehicle Localization with Complementary Filter: Performance Analysis in the Shallow Water Environment”, Journal of Intelligent and Robotic Systems, Vol. 68, 2012, pp.373–386.
[11] بهروز مراد حاصل، وهاب دهلقی، محمد­تقی عیوضی و مصطفی تقی پور، "مدلسازی آزمایشگاهی سیستم انتقال حرارت تیوب رادیولوژی با نانوسیال کربنی چند دیواره و بررسی بهبود ضریب انتقال حرارت"، نشریه مدلسازی در مهندسی، دوره 12، شماره 38، پاییز 1393، صفحه 45-58.
[12] مهرداد بزاززاده، مجتبی دهقان منشادی، امین نظریان شهربابکی و علی شهریاری، "طراحی کنترلکننده بهینه فشار در یک تونل باد فراصوت دمشی با استفاده از الگوریتم ژنتیک"، نشریه مدلسازی در مهندسی، دوره 14، شماره 47، زمستان 1395، صفحه 155-169
[13] سجاد صدر، داود عرب خابوری و مصطفی نمازی، " مدلسازی سیستم کنترل سرعت قطار الکتریکی با لحاظ لغزش چرخ بر روی ریل"، نشریه مدلسازی در مهندسی، دوره 14، شماره 47، زمستان 1395، صفحه 255-266
[14] G. Liu, G. Chen, J. Jiao, and R. Jiang, "Dynamics Modeling and Control Simulation of an Autonomous Underwater Vehicle", Journal of coastal research, special Issue No. 73, 2015.
[15] R. D. Hernandedz, P. A. Mora, "modeling and simulation of AUV using Hardware in the loop", international journal of applied engineering research, Vol. 11, No. 8, January 2016, pp. 5700-5703.
[16] M. oddone, A. bruzzone, E. Coelho, D. Cecchi, and B. garau, "An underwater buoyancy –driven glider simulator with modeling & simulation as a service architecture", proceeding of the international defense and homeland security simulation workshop, 2017.
[17] A. C. Dubey and V. A. Subramanian, "Hardware-in-the-loop simulation and control design for defense science journal, Vol. 70, No.4, July 2020, pp. 469-476.