A new hybrid method DSM for parameter setting of meta-heuristic algorithms

Document Type : Industry Article

Authors

Khayyam University

Abstract

Parameters of meta-heuristic algorithms are very effective in their performance and are usually done experimentally, which is very time-consuming. In this research, a hybrid method for selecting the optimal parameters of meta-heuristic algorithms is presented. The proposed method is a combination of data envelopment analysis methods and response surface methodology and is called DSM. In fact, this method can be used to optimize multi-objective problems and its main advantage is to create and optimize one performance response procedure instead of optimizing multiple output response procedures. In addition to optimizing parameters, it also simultaneously maximizes efficiency. In this research, the proposed DSM method has been used to adjust the parameters of the cuckoo optimization algorithm to optimize the standard and experimental Aklay and Rastrigin functions. In the hybrid DSM method, first, the efficiency value is calculated using data envelopment analysis for each set of meta-heuristic algorithm parameters, then the response procedure for performance is determined according to the meta-heuristic algorithm parameters using the response surface methodology. Finally, by optimizing the efficiency surface, the optimal values of the cuckoo algorithm parameters are obtained. In order to validate, the results of the proposed method have been compared with a similar method. The results show better performance of the hybrid algorithm in terms of solution time, number of iterations, and accuracy of the optimization function compared to other similar methods.

Keywords


]1[ حوریا حاجیان و مسعود یقینی، "مروری بر روش‌های تنظیم و کنترل پارامترهای الگوریتم‌های بهینه‌سازی"، کنفرانس بین المللی چالش‌های مهندسی، تکنولوژی و علوم کاربردی، اسفند، دبی، 1396.
[2] S.E. Najafi, and R. Behnoud, “Consolidated Technique of Response Surface Methodology and Data Envelopment Analysis for setting the parameters of meta-heuristic algorithms - Case study: Production Scheduling Problem”, International Journal of Data Envelopment Analysis, Vol.3, No.1, 2015, pp. 363 – 367.
[3] A. Kazikova, M. Pluhacek, and R. Senkerik, “Why Tuning the Control Parameters of Metaheuristic Algorithms Is So Important for Fair Comparison?” MENDEL. Vol.26, No.2, 2020, pp.9-16.
[4] B. W. Cheng, and C. L. Chang, “A Study on Flowshop Scheduling Problem Combining Taguchi Experimental Design and Genetic Algorithm”, Expert Systems with Applications, Vol. 32, No. 2, 2007, pp. 415-421.
[5] B. Naderi, M. Zandieh, and V. Roshanaei, “Scheduling Hybrid Flowshops with Sequence Dependent Setup Times to Minimize Makespan and Maximum Tardiness”, International Journal of Advanced Manufacturing Technology, Vol. 41, No. 11, 2009, pp. 1186-1198.
[6] T. Bartz-Beielstein, and S, Markon. “Tuning search algorithms for real-world applications: A regression tree based approach", Proceedings of the Congress on Evolutionary Computation, Jun 19, Vol. 1, 2004, pp. 1111-1118.
[7] E. Ridge, and D. Kudenko, "Analyzing heuristic performance with response surface models: prediction, optimization and robustness", Proceedings of the 9th annual conference on Genetic and evolutionary computation, 2007, pp. 150-157.
[8] M. Fallahia, S. Amiri, and M. Yaghinic, “A Parameter Tuning Methodology for Metaheuristics Based on Design of Experiments”, International Journal of Engineering and Technology, Vol. 2, No. 6, 2014, pp. 497-521.
[9] A. Saremi, T. ElMekkawy, and G. Wang, “Tuning the parameters of a memetic algorithm to solve vehicle routing problem with backhauls using design of experiments”, International Journal of Operations Research, Vol. 4, 2007, pp. 206-219.
[10] J. Xu, S. Y. Chiu, and F. Glover, “Fine‐tuning a Tabu Search Algorithm with Statistical Tests”, International Transactions in Operational Research, Vol. 5, No. 3, 1998, pp. 233-24.
[11] T. Beielstein, K. E. Parsopoulos, and M. N. Vrahatis, “Tuning PSO parameters through sensitivity analysis”, Universitätsbibliothek Dortmund; Jan, 2002.
[12] E. Ridge, “Design of experiments for the tuning of optimisation algorithms”, University of York, Department of Computer Science, 2007.
[13] J. Silc, K. Taskova, and P. Korosec, “Data Mining-Assisted Parameter Tuning of a Search Algorithm. Informatica”, Vol. 39, No. 2, 2015, pp. 169.
[14] N. Veček, M. Mernik, B. Filipič, and M. Črepinšek, "Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms", Information Sciences, Vol. 372, 2016, pp. 446-469.
[15] T. Saeheaw, “Parameter tuning of the HCSCROCFO-3Opt algorithm for solving the capacitated vehicle routing problem”, International Journal of Industrial Engineering Computations, Vol. 11, No.4, 2020, pp.481-490.
[16] J. B. Odili, and J. O. Fatokun, "The Mathematical Model, Implementation and the Parameter-Tuning of the African Buffalo Optimization Algorithm."  International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), Ayobo, Nigeria, 2020, pp. 1-8.
[17] G. F. Gomes, and F. A. de Almeida, “Tuning metaheuristic algorithms using mixture design: Application of sunflower optimization for structural damage identification”, Advances in Engineering Software, Vol.149, 2020.
[18] S. K. Joshi, and J. C. Bansal, “Parameter tuning for meta-heuristics”, Knowledge-Based Systems, Vol.189, 2020.
[19] K. Hinkelmann, and O. Kempthorne, “Design and analysis of experiments”, New York: Wiley; 1994.
[20] T. Y. Wang, and K. B. Wu, “A Parameter Set Design Procedure for the Simulated Annealing Algorithm under the Computational Time Constraint”, Computers and Operations Research, Vol. 26, No. 7, 1999, pp. 665-678.
[21] E. Shadkam, and M. Bijari, “The Optimization of Bank Branches Efficiency by Means of Response Surface Method and Data Envelopment Analysis: A Case of Iran”, Journal of Asian Finance, Economics and Business, Vol. 2, 2015, pp. 13-18.
[22] R. Rajabioun, “Cuckoo Optimization Algorithm”, Applied Soft Computing journal, Vol. 11, 2011, pp. 5508-5518.
[23] E. Shadkam, and M. Bijari, “A Novel Improved Cuckoo optimization algorithm for engineering optimization”, International Journal of Artificial Intelligence and Soft Computing, Vol. 7, 2020, pp. 164-177.
[24] E. Shadkam, and M. Bijari, “Evaluation the Efficiency of CuckooOptimization Algorithm”, International Journal on Computational Sciences and Applications (IJCSA), Vol. 4, 2014, pp. 39-47.
[25] A. Akbarzadeh, and E. Shadkam, “The study of Cuckoo optimization algorithm for production planning problem”,  International Journal of Computer-Aided technologies, Vol. 2, 2015, pp. 1-10.
[26] E. Shadkam, R. Delavari, F. Memariani, and M. Poursaleh, “Portfolio selection by the means of Cuckoo optimization algorithm”, International Journal on Computational Sciences and Applications (IJCSA), Vol. 5, 2015, pp. 1-1.
[27] E. Shadkam, and M. Bijari, “Multi-objective simulation optimization for selection and determination of order quantity in supplier selection problem under uncertainty and quality criteria”, International Journal of Advanced Manufacturing Technology, Vol. 1, 2015, pp. 1-13.
[28] M. Gorjestani, E. Shadkam, M. Parvizi, and S. Aminzadegan, “A hybrid COA-DEA method for solving multi-objective problem”, International Journal on Computational Sciences & Applications (IJCSA), Vol. 5, 2015, pp. 1-10.
[29] M. Parvizi, E. Shadkam, and N. Jahani, “A hybrid coa/ε-constraint method for solving multi-objective problems”, International Journal in Foundations of Computer Science and Technology (IJFCST), Vol. 5, 2015, pp. 27-40.
[30] Z. Borhanifar, and E. Shadkam, “The new hybrid coaw method for solving multi-objective problems”, International Journal in Foundations of Computer Science and Technology (IJFCST), Vol. 5, 2015, pp. 15-22.
]31[ عابد حسام، سعید امامی و رمضان نعمتی کشتلی، "زمانبندی کارها و فعالیت‌های نگهداری و تعمیرات در محیط ماشین‌های موازی نامرتبط" نشریه مدل‌سازی در مهندسی، دوره 17، شماره 58، پاییز 1398، صفحه 247- 233.
]32[ جلال رضایی نور، فهیمه یزدیان و محسن عاقلان، "طراحی شبکه زنجیره تأمین حلقه بسته چهار سطحی با رویکرد یکپارچه سازی تصمیمات اقتصادی، زیست محیطی و مسئولیت اجتماعی در قبال کارمندان"، نشریه مدل‌سازی در مهندسی، دوره 17، شماره 57، تابستان 1398، صفحه 92- 69.
]33[ عرفان بابایی تیرکلایی، ایرج مهدوی و میر مهدی سید اصفهانی، "حل مسئله مسیریابی وسایل نقلیه با در نظر گرفتن سفرهای چندگانه و پنجره‌های زمانی در مدیریت پسماند شهری با استفاده از الگوریتم بهینه سازی گرگ خاکستری"، نشریه مدل‌سازی در مهندسی، دوره 17، شماره 57، تابستان 1398، صفحه 110- 93.