Numerical Analysis of Scott Russell’s wave using FVM and Overset Mesh

Document Type : Civil Article

Authors

1 Department of civil engineering- najaf abad univercity, isfahan, iran

2 PhD. student

3 zanjan university

4 najaf abad branch, islamic azad university

Abstract

In this research, the effects of various parameters on system consisting of a heavy box sinking vertically into water have been studied. The classic configuration is due to Scott Russell who used the sinking box in 1844 to illustrate the formation of a solitary wave in a long rectangular tank. A FVM method has been used to solve the problem. The VOF method for wave profile and overset mesh for sinking the box into air and water, is used to clarify details of the wave and vortex formation. It was observed that as the box sinks the water is heaved up to form both the solitary wave and a vortex. This vortex follows the wave down the tank. The effects of box density, height of box and depth of water on the created wave height are effective. The simulation results are in satisfactory agreement with the experiments. The highest verification error was reported at 4 %. According to the results, with increasing density from 1800 to 3300 kg/m3 and box height from 0/4 to 0/55 m, wave height increased by 5/3 % and 10/2 %, respectively. In addition, with increasing water depth from 0/18 to 0/36 m, the wave height decreased by 2 % and the diameter of the resulting vortex decreased by 3/4 %. Therefore, the importance of impulsive waves in dam reservoirs with low depth and overlooking hills with high height is twofold, and these points should be considered by designers

Keywords


[1]  J. J. Monaghan, and A. Kos, " Scott Russell’s wave generator", Physics of Fluids,Vol. 12, February 2000, pp. 622-630.
[2]  R. L. Wiegel, " Laboratory studies of gravity waves generated by the movement of a submerged body", Eos, Transactions American Geophysical Union, Vol .36, October 1955 pp. 759-774.
[3]  E. Noda, "Water waves generated by landslides", Journal of the Waterways, Harbors and Coastal Engineering Division, Vol. 96, July 1970, pp. 835-855.
[4] مهدی اژدری مقدم، نصرت اله امانیان و احسان جعفری ندوشن، "بهینه یابی هندسه سرریز کنگره ای مثلثی با استفاده از مدل فازی- عصبی و الگوریتم ژنتیک (مطالعه موردی سد  Hyrum درایالت یوتای آمریکا) "، نشریه مدل سازی در مهندسی،  دوره7، شماره 19، زمستان 1388، صفحه 57-67.
[5] هاشم شریعتمدار و عادل میر حاج، "ﻣﺪل ﺳﺎزی اﻧﺪرﮐﻨﺶ ﺑﺮج آﺑﮕﯿﺮ- ﻣﺨﺰن- ﭘﯽ ﺗﺤﺖ اﺛﺮ زﻟﺰﻟﻪ"، نشریه مدل سازی در مهندسی،  دوره7، شماره 19، تابستان 1388، صفحه 67-80.
[6] P. Heinrich, "Nonlinear water waves generated by submarine and aerial landslides", Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 118, May 1992, pp. 249-266.
[7] B. Ataie‐Ashtiani, and G. Shobeyri, "Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics", International Journal for Nnumerical Methods in Fluids, Vol. 56, May 2007, pp. 209-232.
[8] H. M. Fritz, W. H. Hager, and H. E. Minor, "Landslide generated impulse waves", Experiments in Fluids, Vol. 35, September 2003, pp. 505-519.
[9] B. Wang, L. Yao, H. Zhao, and C. Zhang, "The maximum height and attenuation of impulse waves generated by subaerial landslides", Shock and Vibration, Vol. 31, Jan. 2018, pp. 47-98.
[10] C. Tong, Y. Shao, F. C. W. Hanssen, Y. Li, B. Xie, and Z. Lin, "Numerical analysis on the generation, propagation and interaction of solitary waves by a Harmonic Polynomial Cell Method", Wave Motion,Vol. 88, 2019, pp. 34-56.
[11] M. Robbe-Saule, C. Morize, R. Henaff, Y. Bertho, A. Sauret, and P. Gondret, "Experimental investigation of tsunami waves generated by granular collapse into water", arXiv preprint arXiv:Vol. 2010, 2020, pp. 12308
[12] C. Y. Li, R. S.Shih, and W. K. Weng, "Visualization Investigation of Energy Dissipation Induced by Eddy Currents for a Solitary-like Wave Passing over Submerged Breakwater Sets" Journal of Marine Science and Engineering, Vol. 11, 2020, pp. 834.
[13] Z. Xie, and T. Stoesser, "Two-phase flow simulation of breaking solitary waves over surface-piercing and submerged conical structures", Ocean Engineering, Vol. 213, 2020, pp 107-679.
[14] Q. S. Wang, M. H. Li, and D. W. Li, "Solitary Wave Generation and Propagation under Hypergravity Fields", Water, Vol 10, V, pp. 1381.
[15] N. J. Wu, S. C. Hsiao, H. H. Chen, and R. Y. Yang, "The study on solitary waves generated by a piston-type wave maker", Ocean Engineering, Vol. 117, 2016, pp. 114-129.
[16] N. J. Wu, T. K. Tsay, and Y. Y. Chen, "Generation of stable solitary waves by a piston-type wave maker", Wave Motion,Vol 2, 2014, pp. 240-255.
[17] R. Daneshfaraz, and B. Kaya, "Solution of the propagation of the waves in open channels by the transfer matrix method", Ocean engineering, Vol. 11, No. 12, 2008, pp. 1075-1079.
[18] A. Panizzo, G. Bellotti, and P. De Girolamo, "Application of wavelet transform analysis to landslide generated waves", Coastal Engineering, Vol. 44, February 2002, pp. 321-338.
[19] A. M. Aly, and M. Asai, "Incompressible smoothed particle hydrodynamics simulations of fluid-structure interaction on free surface flows", International Journal of Fluid Mechanics Research, Vol. 41, Jan 2014,  pp. 14-35.
[20] E. Napoli, M. De Marchis, C. Gianguzzi, B. Milici, and A. A. Monteleone, "coupled Finite Volume–Smoothed Particle
Hydrodynamics method for incompressible flows", Computer Methods in Applied Mechanics and Engineering,Vol. 310, 2016, pp. 674-693.
[21] E. Napoli, M. De Marchis, C. Gianguzzi, B. Milici, and A. A. Monteleone, "coupled Finite Volume–Smoothed Particle
Hydrodynamics method for incompressible flows", Computer Methods in Applied Mechanics and Engineering,Vol. 310, 2016, pp. 674-693.
[22] M. S. Shadloo, G. Oger, and D. Le Touzé, "Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges", Computers and Fluids, Vol. 136, 2016, pp. 11-34.
[23] N. G. Jacobsen, D. R. Fuhrman, and J. A. Fredsøe, "wave generation toolbox for the open‐source CFD library: OpenFoam®", International Journal for numerical methods in fluids, Vol. 9, 2012, pp. 1073-1088.
[24] M. A. Afshar, "Numerical wave generation in OpenFOAM®", 2010.
[25] J. R. Pedersen, B. E.Larsen, H. Bredmose, and H. Jasak, "A new volume-of-fluid method in OpenFOAM", VII International Conference on Computational Methods in Marine Engineering, May 2017, pp. 266-278.
[26] OpenFOAM Foundation Ltd., "OpenFOAM — the open source CFD toolbox —Programmers’ guide", May 2016
[27] سجاد اسلامی و مهدی محسنی، " اثر مدل توربولانس بر شبیه‏سازی عددی جریان آشفته نانوسیال در یک لوله افقی"، مدل سازی در مهندسی، دوره 17، شماره 58، 1398، صفحه 279-293.
[28] C. Windt, J. Davidson, B. Akram, and J. V. Ringwood, "Performance assessment of the overset grid method for numerical wave tank experiments in the OpenFOAM environment", 37th International Conference on Ocean, Offshore and Arctic Engineering, July 2018.
[29] A. Aleman, and A. Constantin, "On the decrease of kinetic energy with depth in wave–current interactions", Mathematische Annalen, September 2019, pp. 1-20.