[1] E. Nazemi, S. Farzin, and S. Mohammadi, "Designing a simple radiometric system to predict void fraction percentage independent of flow pattern using radial basis function", Metrology and Measurement Systems, 2018.
[2] M. S. A. Abouelwafa, and E. J. M. Kendall, "The measurement of component ratios in multiphase systems using y-ray attenuationt", Journal of Physics E: Scientific Instruments, Vol. 13, 1980.
[3] C. M. Bishop, and G. D.James, "Analysis of multiphase flows using dual-energy gamma densitometry and neural networks", Nuclear Instruments and Methods in Physics Research A, Vol. 327, 1993, pp. 580-593.
[4] E. Abro, and G. A. Johansen, "Improved void fraction determination by means of multibeam gamma-ray attenuation measurements", Flow Measurement and Instrumentation, Vol. 10, 1999, pp. 99–108.
[5] T. Elperin, and M. Klochko, "Flow regime identification in a two-phase flow using wavelet transform", Experiments in Fluids, Vol. 32, 2002, pp. 674–682.
[6] A. Rabiei, M. Shamsaei, M. Kafaee, M. Shafaei, and N. Mahdavi, "Void fraction and flow regime determination by means of MCNP code and neural network", Nukleonika, Vol. 57, No. 3, 2012, pp. 345−349.
[7] G. H. Roshani, E. Nazemi, S. A. H. Feghhi, and S. Setayeshi, "Flow regime identification and void fraction prediction in two-phase flows based on gamma ray attenuation", Measurement, 2014.
[8] E. Nazemi, G. H. Roshani, S. A. H. Feghhi, S. Setayeshi, E. Eftekhari Zadeh, A. Fatehi, "Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique", International Hydrogen Energy, 2016.
[9] G. H. Roshani , E. Nazemi , and S. A. H. Feghhi," Investigation of using 60Co source and one detector for determining theflow regime and void fraction in gas–liquid two-phase flows", Flow Measurement and Instrumentation, 2016, pp. 73–79.
[10] E. Nazemi, S. A. Feghhi, G. H. Roshani, R. G. Peyvandi, and S. Setayeshi, Precise void fraction measurement in two-phase flows independent of the flow regime using gamma-ray attenuation, Nuclear Engineering and Technology, Vol. 48, No. 1, 2016 February 1, pp. 64-71.
[11] E. Nazemi, S. A. H. Feghhi, and G. H. Roshani, "void fraction prediction in two-phase flows independent of the liquid phase density changes", Radiation Measurments, Vol. 68, 2014, pp. 49–54.
[12] R. Hanus, M. Zych, L. petryka, M. Jaszczur, and P. Hanus, "Signals feature extraction in liquid-gas flow measurements using gamma densitometry time domain", EDP science, 2016.
[13] R. Hanus, M. Zych, M. Kusy, M. Jaszczur, and L. petryka, "Identification of liquid-gas flow regime in a pipeline using gamma-ray absorption technique and computational intelligence methods", Flow Measurement and Instrumentation, 2018.
[14] مصطفی لشکربلوکی، "پیش بینی کشش سطحی مایعات یونی بر پایه ایمیدازولیوم با بکارگیری شبکه عصبی مصنوعی،" مدلسازی در مهندسی، دوره 17، شماره 58، پاییز 1398، صفحه 1-13.
[15] فاطمه کرد و کامیار موقرنژاد، "بررسی تجربی و مدلسازی شبکه عصبی برای پیشبینی ضریب شکست الکلهای خالص و مخلوط دوتایی" ، مدلسازی در مهندسی، دوره 17، شماره 56، بهار 1398، صفحه 375-387.
[16] علی حیدری، داوذ توکلی و پویان فخاریان، "تقریب مقادیر ویژه ورق با استفاده از شبکه عصبی مصنوعی" ، مدلسازی در مهندسی، دوره 11، شماره 35، زمستان 1392، صفحه 49-62.
[17] C. M Salgado, L. E. B. Brandão, C. M. N. A. Pereira, and W. L. Salgado, "Salinity independent volume fraction prediction in annular and stratified (water-gas-oil) multiphase flows using artificial neural networks", Progress in Nuclear Energy, Vol. 76, 2014, pp. 17-23.
[18] S. Hosseini, G. H. Roshani, and S. Setayeshi, "Precise gamma based two-phase flow meter using frequency feature extraction and only one detector", Flow Measurement and Instrumentation, 2020.
[19] M. Bahiraei, N. Mazaheri, and S. Hosseini, "Neural network modeling of thermo-hydraulic attributes and entropy generation of an ecofriendly nanofluid flow inside tubes equipped with novel rotary coaxial double-twisted tape", Powder Technology, Vol. 369, 2020 June 1, pp. 162-75.
[20] M. Bahiraei, L. K. Foong, S. Hosseini, and N. Mazaheri, "Neural network combined with nature-inspired algorithms to estimate overall heat transfer coefficient of a ribbed triple-tube heat exchanger operating with a hybrid nanofluid", Measurement, Vol. 174, 2021 April 1, p. 108967.
[21] M. Bahiraei, L. K. Foong, S. Hosseini, and N. Mazaheri, "Predicting heat transfer rate of a ribbed triple-tube heat exchanger working with nanofluid using neural network enhanced by advanced optimization algorithms", Powder Technology, Vol. 381, 2021 March 1, pp. 459-76.