Increasing efficiency of two-phase flowmeters using frequency-domain feature extraction and neural network in the detector output spectrum

Document Type : Power Article

Authors

1 Electrical Engineering Department, Energy Faculty, Kermanshah University of Technology, Kermanshah, Iran

2 Department of Medical Radiation Engineering, Energy Engineering and Physics Faculty, Amirkabir University of Technology, Tehran, Iran

Abstract

In this paper, three different regimes including annular, stratified and homogeneous in the range of 5%-90% void fraction, were simulated by Mont Carlo N-Particle (MCNP) Codes. In simulated structure, a cesium 137 source and two Nal detectors were used to record received photons. In this study, the Fast Fourier Transform (FFT) was applied to the registered signals from two detectors in order to analyze in the frequency domain. Several features of signals in the frequency domain were extracted using average value of fast Fourier transform, the amplitude of dominant frequency, kurtosis, Standard Deviation (STD), RMS (Root Mean Square) and Variance. The same features were extracted from analyzed signals of both detectors in order to find the best separation patterns. These extracted features were used as inputs of artificial neural networks (ANNs) to increase the efficiency of two-phase flowmeters. Two multi-layer perceptrons (MLP) neural networks were implemented in MATLAB software in order to classify flow regimes (annular, stratified and homogeneous) and predict the void fraction. All of the training and testing data were obtained correctly and the mean relative error percentage of the predicted void fraction was 1/15 %.

Keywords


[1] E. Nazemi, S. Farzin, and S. Mohammadi, "Designing a simple radiometric system to predict void fraction percentage independent of flow pattern using radial basis function", Metrology and Measurement Systems, 2018.
[2] M. S. A. Abouelwafa, and E. J. M. Kendall, "The measurement of component ratios in multiphase systems using y-ray attenuationt", Journal of Physics E: Scientific Instruments, Vol. 13, 1980.
[3] C. M. Bishop, and G. D.James, "Analysis of multiphase flows using dual-energy gamma densitometry and neural networks", Nuclear Instruments and Methods in Physics Research A, Vol. 327, 1993, pp. 580-593.
[4] E. Abro, and G. A. Johansen, "Improved void fraction determination by means of multibeam gamma-ray attenuation measurements", Flow Measurement and Instrumentation, Vol. 10, 1999, pp. 99–108.
[5] T. Elperin, and M. Klochko, "Flow regime identification in a two-phase flow using wavelet transform", Experiments in Fluids, Vol. 32, 2002, pp. 674–682.
[6] A. Rabiei, M. Shamsaei, M. Kafaee, M. Shafaei, and N. Mahdavi, "Void fraction and flow regime determination by means of MCNP code and neural network", Nukleonika, Vol. 57, No. 3, 2012, pp. 345−349.
[7] G. H. Roshani, E. Nazemi, S. A. H. Feghhi, and S. Setayeshi, "Flow regime identification and void fraction prediction in two-phase flows based on gamma ray attenuation", Measurement, 2014.
[8] E. Nazemi, G. H. Roshani, S. A. H. Feghhi, S. Setayeshi, E. Eftekhari Zadeh, A. Fatehi, "Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique", International Hydrogen Energy, 2016.
[9] G. H. Roshani , E. Nazemi , and S. A. H. Feghhi," Investigation of using 60Co source and one detector for determining theflow regime and void fraction in gas–liquid two-phase flows", Flow Measurement and Instrumentation, 2016, pp. 73–79.
[10] E. Nazemi, S. A. Feghhi, G. H. Roshani, R. G. Peyvandi, and S. Setayeshi, Precise void fraction measurement in two-phase flows independent of the flow regime using gamma-ray attenuation, Nuclear Engineering and Technology, Vol. 48, No. 1, 2016 February 1, pp. 64-71.
[11] E. Nazemi, S. A. H. Feghhi, and G. H. Roshani, "void fraction prediction in two-phase flows independent of the liquid phase density changes", Radiation Measurments, Vol. 68, 2014, pp. 49–54.
[12] R. Hanus, M. Zych, L. petryka, M. Jaszczur, and P. Hanus, "Signals feature extraction in liquid-gas flow measurements using gamma densitometry time domain", EDP science, 2016.
[13] R. Hanus, M. Zych, M. Kusy, M. Jaszczur, and L. petryka, "Identification of liquid-gas flow regime in a pipeline using gamma-ray absorption technique and computational intelligence methods", Flow Measurement and Instrumentation, 2018.
[14] مصطفی لشکربلوکی، "پیش بینی کشش سطحی مایعات یونی بر پایه ایمیدازولیوم با بکارگیری شبکه عصبی مصنوعی،" مدلسازی در مهندسی، دوره 17، شماره 58، پاییز 1398، صفحه 1-13.
[15] فاطمه کرد و کامیار موقرنژاد، "بررسی تجربی و مدلسازی شبکه عصبی برای پیشبینی ضریب شکست الکلهای خالص و مخلوط دوتایی" ، مدلسازی در مهندسی، دوره 17، شماره 56، بهار 1398، صفحه 375-387.
[16] علی حیدری، داوذ توکلی و پویان فخاریان، "تقریب مقادیر ویژه ورق با استفاده از شبکه عصبی مصنوعی" ، مدلسازی در مهندسی، دوره 11، شماره 35، زمستان 1392، صفحه 49-62.
[17] C. M Salgado, L. E. B. Brandão, C. M. N. A. Pereira, and W. L. Salgado, "Salinity independent volume fraction prediction in annular and stratified (water-gas-oil) multiphase flows using artificial neural networks", Progress in Nuclear Energy, Vol. 76, 2014, pp. 17-23.
[18] S. Hosseini, G. H. Roshani, and S. Setayeshi, "Precise gamma based two-phase flow meter using frequency feature extraction and only one detector", Flow Measurement and Instrumentation, 2020.
[19] M. Bahiraei, N. Mazaheri, and S. Hosseini, "Neural network modeling of thermo-hydraulic attributes and entropy generation of an ecofriendly nanofluid flow inside tubes equipped with novel rotary coaxial double-twisted tape", Powder Technology, Vol. 369, 2020 June 1, pp. 162-75.
[20] M. Bahiraei, L. K. Foong, S. Hosseini, and N. Mazaheri, "Neural network combined with nature-inspired algorithms to estimate overall heat transfer coefficient of a ribbed triple-tube heat exchanger operating with a hybrid nanofluid", Measurement, Vol. 174, 2021 April 1, p. 108967.
[21] M. Bahiraei, L. K. Foong, S. Hosseini, and N. Mazaheri, "Predicting heat transfer rate of a ribbed triple-tube heat exchanger working with nanofluid using neural network enhanced by advanced optimization algorithms", Powder Technology, Vol. 381, 2021 March 1, pp. 459-76.