Thermodynamic analysis of a 30 kW gas-solar hybrid microturbine system based on radiation conditions in Qom province

Document Type : Mechanics article

Authors

1 Department mechanic, faculty of mechanical engineering, Qom university of technology, Qom city, Iran

2 Department of mechanical, faculty of mechanical engineering, Qom university of technology, Qom city, Iran

3 Department of mechanical, Faculty of mechanical engineering. Qom university of technology. Qom city, Iran country.

Abstract

In this paper, the thermodynamic analysis of a 30 kW gas microturbine combined with a solar parabolic concentrator has been performed under three different radiation conditions in Qom province. In the above system, a heat recovery, recuperator, is also used to increase the efficiency of the cycle. The programming is written in EES software. The effect of influential parameters such as ambient temperature, compressor pressure ratio, inlet gas temperature to the turbine, solar radiation intensity, receiver area and the presence of recuperator on the system performance have been investigated. The results show that with increasing the compressor pressure ratio, the electrical and mechanical efficiency of the system first increases and then decreases so that the overall efficiency of the system has its maximum value in the compressor pressure ratio in the range of 3 to 4. Also, the gas-solar turbine in August reduces the specific fuel consumption by about 58% compared to simple gas microturbines and at the same time increases the electrical and mechanical efficiency of the system by about 20%. In addition, by increasing the area of the receiver per 20 m2, the specific fuel consumption is reduced by about 38%.

Keywords


[1] Y. Kalinci, I. Dincer and A. Hepbasli, "Energy and exergy analyses of a hybrid hydrogen energy system: A case study for Bozcaada ", International Journal Hydrogen, Vol. 42, No. 4, January 2017, pp. 2492-2503. 
[2] A.M. Daabo, A. Al Jubori, S. Mahmoud and R. Al-Dadah, "Parametric study of efficiency small-scale axial and radial turbine for solar powered Brayton cycle application", Energy Conversion and Management, Vol.128, November 2016, pp. 343-360.
[3] C. Soares, "Microturbines in Integrated Systems, fuel cells, and Hydrogen fuel", Butterworth-Heinemann, 2007, pp. 255-257.
[4] S.E. Hosseini, A.M. Andwari, M.A. Wahid and G. Bagheri, "A review on green Energy Potentials in Iran", Renewable and Sustainable Energy Review, Vol. 27, November 2013, pp. 533-545.
[5] R.R. Hernandez, S.B. Ester, M.L. Murphy-Mariscal, F.T. Barrows, M. Tavassoli, E.B. Allen, C.W. Barraws, J. Brlanp, R. Ochoa-Hueso, S. Ravi and M.F. Allen, "Environmental impacts of utility– scale solar energy", Renewable and sustainable energy reviews, Vol. 29, January 2014, pp. 766-779.
[6] P.A. Pilavachi, "Mini-and micro-gas turbines for combined heat and power", Applied thermal engineering, Vol. 22, NO. 18, December 2002, pp. 2003-2014.
[7] Zh. Xu, Y. Lu, B. Wang, L. Zhao, CH. Chen and Y. Xiao, "Experimental evaluation of 100Kw grade micro humid air turbine cycles converted from a microturbine", Energy, Vol. 175, May 2019, pp. 687-693.
[8] I.I. Enagi, K.A. Al-attab and Z.A. Zainal, "Combustion chamber design and Performance for micro gas turbine application", Fuel processing technology, Vol. 166, November 2017, pp. 258-268.
[9] A. Vidal, J.C. Bruno, R. Best and A. Coronas, "Performance Characteristics and Modeling of Micro Gas Turbine for Their Integration with Thermally Activated Cooling Technologies", International Journal of energy research, Vol. 31, NO. 2, August 2007, pp. 119-134.
[10] Ch.Ch. Chang, D.V. Manh, W.L. Hsu, and et al, "A case study on the Electrical Generation Using a Micro Gas Turbine Fuelled by Biogas from a Sewage Treatment Plant", Energies, Vol. 12, No. 12, Jan 2019, p. 2424.
[11] R. Capata, K. Kylykbashi, A. Calabria and M.D. Veroli, "Experimental Test on a Pre-Heated Combustion Chamber for Ultra-Micro Gas Turbine device; Air/Fuel Ratio Evaluation", Engineering, Vol. 8, No. 11, November 2016, p. 789.
[12] حمید رادمنش و حمید هادی، «مدل‌سازی و ارزیابی فنی، اقتصادی و زیست‌محیطی عملکرد پیل سوختی کربنات مذاب در مقایسه با میکروتوربین‌ گازی به‌منظور تولید هم‌زمان برق و حرارت»، مجلة مدل‌سازی در مهندسی، دورة 16، شمارة 55، زمستان 1397، صفحة 411-426.
[13] جاماسب پیرکندی، مهدی جهرمی و مصطفی محمودی، «شبیه‌سازی پارامتری یک سیستم تولید هم‌زمان برپایة میکروتوربین صنعتی از دیدگاه اگزرژی و اقتصادی»، مجلة مدل‌سازی در مهندسی، دورة 13، شمارة 40، بهار 1394، صفحة 17-32.
[14] A. Giostri and E. Macchi, "An advanced solution to boost sun-to-electricity efficiency of parabolic dish", Solar Energy, Vol. 139, December 2016, pp. 337-354.
[15] M.J. Santos, E. Vega, R.P. Merchan, J. Gracia-Ferrero, A. Medina and A. Calvo Hernadez, “Micro gas turbine and solar parabolic dish for distributed generation”, International Conference on Renewable Energies and power quality (ICREPQ'18), Salamanca (Spain), March 2018, p. 37008.
[16] M.C. Cameretti, G. Langella, S. Sabino and R. Tuccillo, "Modeling of a Hybrid Solar Micro Gas-turbine Power Plant", Energy Procedia, Vol. 82, December 2015, pp. 833-840.
[17] W. Wang, G. Ragnolo, L. Aichmayer, T. Strand and B. Laumert, "Integrated Design of a Hybrid Gas Turbine-receiver Unit for a Solar Dish System", Energy Procedia, Vol. 69, May 2015, pp. 583-592.
[18] Ch. Felsmann, U. Gampe and M. Freimark, “Dynamic Behavior of Solar Hybrid Gas Turbine System”, Turbine Technical Conference and Exposition GT, NO.42437, August 2015, pp. 121-130. 
[19] G. Ragnolo, L. Aichmayer, W. Wang, T. Strand and B. Laumert, "Technoeconomic Design of a Micro Gas-turbine for a Solar Dish System", Energy Procedia, Vol. 69, May 2015, pp. 1133-1142.
[20] G. Xu, Y. Wang, Y. Quen, H. Li, Sh. Li, G. Song and W. gao, "Design and characteristics of a novel tapered tube bundle receiver for high-temperature solar dish system", Applied Thermal Engineering, Vol. 91, December 2015, pp. 791-799.
[21] M.A. Delaver and J. Wang, "Simulation of a hybrid system of solar-microturbines in cold climate regions", Applied Thermal Engineering, Vol. 182, September 2020, p. 116080.
[22] L. Aichmayer, J. Spelling and B. Laumert, "Preliminary design and analysis of a novel solar receiver for a micro-turbine based solar dish system", Solar energy, Vol. 114, April 2015, pp. 378-396.
[23] J. Chen, G. Xiao, M.L. Ferrari, T. Yang, M. Ni and K. Cen, "Dynamic simulation of a solar-hybrid microturbine system with experimental validation of main parts", Renewable Energy, Vol. 154, July 2020, pp. 187-200.
[24] M.E. Zayed, J. Zhao, A.H. Elsheikh, W. Li and M. Abd Elaziz, Optimal design parameters and performance optimization of thermodynamically balanced dish/Stirling concentered solar power system using multi-objective particle swarm optimization, Applied Thermal Engineering, Vol. 178, September 2020, p. 115539.
[25] A.H. Keshavarzzadeh, P. Ahmadi, and M.A. Rosen, "Technoeconomic and environmental optimization of a solar tower integrated energy system for freshwater production", Journal of Cleaner Production, Vol. 270, October 2020, p. 121760.
[26] A.H. Keshavarzzadeh, and P. Ahmadi, "Multi-objective techno-economic optimization of a solar based integrated energy system using various optimization methods", Energy conversion and management, Vol. 196, September 2019, pp. 196-210.
[27] I. Fakhari, P. Behinfar, F. Raymand, A. Azad, P. Ahmadi, E. Houshfar and M. Ashjaee, "4E analysis and tri-objective optimization of a triple-pressure combined cycle power plant with combustion chamber steam injection to control NO x emission", Journal of Thermal Analysis and Calorimetry, Feb 2021, pp.1-17.
[26] W. Wang, "Development of an impinging receiver for solar dish-Brayton systems", Doctoral dissertation, KTH Royal Institute of Technology, 2015.
[27] H. Riazi and N.A. Ahmed, "Effect of the Ratio of Specific Heats on a Small-Scale Solar Brayton Cycle", procedia Engineering, Vol. 49, November 2012, pp.263-270.
[28] هامون پورمیرزا آقا، رضا ابراهیمی و امیر بابک انصاری، «تحلیل انرژی و اگزرژی سیستم ترکیبی توربین‌گازی مجهز به پیل سوختی اکسید جامد لوله‌‌ای»، مجلة مدل‌سازی در مهندسی، دورة 15، شمارة 51، زمستان 1396، صفحة 319-330.
[29] H. Kurt, Z. Recebli and E. Gedik, "Performance analysis of open cycle gas turbines", International Journal of Energy Research, Vol.33, March 2009, pp.285-294.
[30] G. Xiao, T. Yang, H. Liu, D. Ni, M. L. Ferreari, M.Li, Zh. Luo, K. Cen and M. Ni, "Recuperators for micro gas turbines: A review", Applied Energy, Vol. 197, 1 July 2017, pp. 83-99.
[31] P. Ahmadi and I. Dincer, "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)", Energy, Vol. 35, December 2010, pp. 5161-5172.
[32] J. Coventry and Ch. Andraka, "Dish system for CSP", Solar Energy, Vol. 152, August 2017, pp. 140-170.
[33] J. Zhu, K. Wang, H. Wu, D. Wang, J. Du and A.G. Olabi, "Experimental investigation on the energy and exergy performance of a coiled tube solar receiver", Applied Energy, Vol. 156, October 2015, pp. 519-527.
[34] R.V. Padilla, "Simplified methodology for designing parabolic trough solar power plant", University of south Florida, 4 April 2011, (Ph.D. Thesis).
[35] O. Behar, A. Hhellaf and K. Mohammedi, "A novel parabolic trough solar collector model–Validation with experimental data comparison to Engineering Equation solver (EES)", Energy Conversion and Management, Vol. 106, December 2015, pp. 268-281.
[36] L. Malinowaski and M. Lewandowska, "Analytical model-based energy and exergy analysis of a gas microturbine at part-load operation", Applied Thermal Engineering, Vol. 57, August 2013, pp. 125-132.
[37] F. Caresana, L. Pelagalli, G. Comodi and M. Renzi, "Microturbogas cogeneration system for distributed generation: Effects of ambient temperature on global performance and components behavior", Applied Energy, Vol. 124, July 2014, pp. 17-27.
 
[38] M.T. Mansouri, P. Ahmadi, A.G. Kaviri and M.N.M. Jaafar, "Exergetic and economic evaluation of the of HRSG configurations on performance of combined cycle power plant", Energy Conversion and Management, Vol. 58, June 2012, pp.47-58.
[39] مریم پورحسن‌زاده، امیر فرهاد نجفی و پوریا احمدی، «مدل‌سازی ترمودینامیکی و تحلیل عملکرد یک میکروتوربین در تولید هم‌زمان حرارت و قدرت»، کنفرانس بهینه‌سازی مصرف انرژی، تهران، ایران، 2 تا 3 مرداد، 1389.
[40] W. De Paepe, F. Delattin, S. Bram and J. De Ruyck,"Steam injection experiments in a microturbine A thermodynamic performance analysis", Applied Energy, Vol. 97, September 2012, pp. 569-576.
[41] I.A. Orellanos Camargo, G.E. Velencia Ochoa, J.E. Rendon Lafaurie and M.O. Cadenas, "Exergoeconomic Analysis of a 30 Kw Micro Turbine Cogeneration System Using Hysys and Matlab", CHEMICAL ENGINEERING TRANAATIONS, Vol. 57, March 2017, pp.475-480.
[42] K. Thu, B.B. Saha, K.J. Chua and Th.D. Bui, "Thermodynamic analysis on the part-load performance of a microturbine system for micro/mini-CHP applications", Applied Energy, Vol. 178, 15 September 2016, pp. 600-608.
[43] A. Giostri, "Preliminary analysis of solarized micro turbine gas turbine application to CSP parabolic dish plans", Energy procedia, Vol. 142, August 2017, pp. 768-773.