Study of the electronic and optical properties of doped gallium sulfide monolayer by first principles calculations

Document Type : Power Article

Authors

1 Department of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.

2 Department of Electrical and engineering, Islamic Azad Yazd university, Yazd branch, Yazd, Iran.

3 2Department of Electrical Engineering, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran.

Abstract

The present paper investigates the electronic and optical behavior of monolayer gallium sulfide as a transition metal monochalcogenide, doped with IV and V group atoms of the periodic table. The calculations are performed in the SIESTA software package based on density functional theory using the exchange correlation function and the generalized gradient approximations. Analysis of the electronic structure of this material shows that the pure gallium sulfide monolayer has an indirect band gap of 2.3 eV. In order to investigate the effects of impurities on this structure, the impurity atoms of groups IV and V were applied in the position of sulfur and gallium atoms. The impurity concentration of doped structures is 1.14%. The simulation results show that the presence of this impurity, depending on the type of impurity atom and its location, leads to a transition from semiconductor to metal, indirect to direct semiconductor or non-magnetic to magnetic state in this structure. For example, when Sb is doped to the gallium sulfide monolayer in the position of the sulfur atom, this system is magnetic with a direct band gap, while its replacement by the gallium atom preserves the semiconductor nature of the indirect band gap structure with less gap energy. In addition to the electronic properties, the optical properties of the alloyed structure were also analyzed. The results show that the GaS structure of the alloyed alloy with elements of the fourth and fifth groups opens the way for nanoelectronics, optoelectronics and spintronics applications.

Keywords


[1] A. Bhardwaj,  G. Sharma, and S. Gupta, "Nanotechnology Applications and Synthesis of Graphene as Nanomaterial for Nanoelectronics", Nanomaterials and Environmental Biotechnology, Springer, Cham, 2020, Pp. 251-269.
[2] A. A. Sagade, and A. Nyayadhish. "A carbon nanotube–graphene nanoribbon seamless junction transistor", Nanoscale Advances 2.2, 2020, pp. 659-663.
[3] M. Nayeri, M. Fathipour, and A. Yazdanpanah Goharrizi, "Behavior of the dielectric function of monolayer MoS2 under Uniaxial Strain", Journal of Computational Electronics, Vol.15, No. 4, 2016, pp. 1388-1392.
[4] سمیه فتوحی، "طراحی و مدل سازی اتمی سوئیچ الکترومکانیکی لغزشی چند حالته مبتنی بر نانو نوارگرفاینی آلفا دو لایه"، نشریه مدل‌سازی در مهندسی، دوره 18، شماره 62، پاییز1399، doi: 10.22075/jme.2020.20591.1912.
[5] سمیه فتوحی و سید سعید حاجی نصیری، "طراحی اینورتر گرافنی یکپارچه و مدل سازی ماتریس انتقال آن"، نشریه مدل‌سازی در مهندسی، دوره 18، شماره 61، تابستان 1399، doi: 10.22075/jme.2020.19686.1846.
]6[ سید سعید حاجی نصیری و محمدکاظم مروج فرشی و رحیم فائز، " مدل مداری و ماتریس انتقال خطوط ارتباطی نانولوله‌های کربنی چندلایه ناهمسان باندل شده"، نشریه مدل‌سازی در مهندسی، دوره 17، شماره 58، پاییز1398، صفحه 113-126.
[7] A. K. Geim, and K. S. Novoselov, "The rise of graphene", Nanoscience and technology: a collection of reviews from nature journals,Vol. 6, March 2010, pp 11-19.
[8] H. Chen, P. Yan, J. Li, C. He, T. Ouyang, C. Zhang, C. Tang, and J. Zhong,  "Tunable photoelectronic properties of hydrogenated-silicene/halogenated-silicene superlattices for water splitting", Journal of Applied Physics, Vol. 127, No. 8, February 2020, pp. 084301.
[9] A. Ayatollahi, M.R. Roknabadi, M. Behdani, N. Shahtahmassebi, and B. Sanyal, "Density functional investigations on the adsorption characteristics of nucleobases on germanene nanoribbons", Physica E: Low-dimensional Systems and Nanostructures 117, Vol. 117, March 2020, pp. 113772.
[10] M. Y. Bakir, H. D. Ozaydin, T. Gorkan, O. U. Akturk, G. Gokoglu, E. Akturk, and S. Ciraci, "Free-standing and supported phosphorene nanoflakes: Shape-and size-dependent properties", Applied Surface Science, Vol. 506, March 2020, pp. 144756.
[11] Y. Suzuki, and K. Watanabe, "Excitons in two-dimensional atomic layer materials from time-dependent density functional theory: mono-layer and bi-layer hexagonal boron nitride and transition-metal dichalcogenides", Physical Chemistry Chemical Physics, Vol. 22, No. 5, 2020, pp. 2908-2916.
[12] C. Li, Y. Xu, w. Sheng, W. –J. Yin, G. –Z. Nie, and Z. Ao,"A promising blue phosphorene/C 2 N van der Waals type-II heterojunction as a solar photocatalyst: a first-principles study", Physical Chemistry Chemical Physics, Vol. 2, No. 8, February 2020, pp. 5155-5164.
[13] L. F. Kremer, and R. J. Baierle, "Graphene and silicene nanodomains in a ultra-thin SiC layer for water splitting and hydrogen storage. A first principle study", International Journal of Hydrogen Energy, Vol. 45, No. 22, February 2020, pp.  615-623.
[14] D. Late, B. Liu, H. S. Matte, and C. N. R. Rao,"Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates", Advanced Functional Materials, Vol. 22, No. 353, February 2012, pp. 1894-1905.
[15] P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, "Synthesis of few-layer GaSe nanosheets for high performance photodetectors", ACS nano, Vol. 6, No. 7, June 2020, pp. 5988-5994.
[16] R. H. Almadvari, M. Nayeri, and S. Fotoohi, "Engineering of electronic and optical properties of monolayer gallium sulfide/selenide in presence of intrinsic atomic defects", Materials Research Express, Vol. 7, No. 1, January 2020, pp. 015915.
[17] C. Ren, S. Wang, H. Tian, Y. Luo, J. Yu, Y. Xu, and M. Sun, "First-principles investigation on electronic properties and band alignment of group III monochalcogenides", Scientific reports, Vol. 9, No. 1, September 2019, pp. 1-6.
[18] Y. Ma, Y. Dai, m. Guo, l. Yu, and B. Huang,"Tunable electronic and dielectric behavior of GaS and GaSe monolayers", Physical Chemistry Chemical Physics, Vol. 15, No. 19, Mar 2013, pp. 7098-7105.
[19] M. Yagmurcukardes, R. T. Senger, F. M. Peeters, and H. Sahin, "Mechanical properties of monolayer GaS and GaSe crystals", Physical Review B, Vol. 94, No. 24, December2016, pp. 245407.
[20] K. D. Pham, V. T. T. Vi, D. V. Thuan, N. V. Hieu, C. V. Nguyen, H. V. Phuc, B. D. Hoi, L. T. T. Phuong, N.Q. Cuong, D. V. Lu, and N. N. Hieu, , "Tuning the electronic properties of GaS monolayer by strain engineering and electric field", Chemical Physics, Vol. 524, August 2019, pp. 101-105.
[21] M. Sharma, and P. K. Ahluwalia, "Exceptionally tunable electronic, optical and transport properties of two dimensional GaS doped with group II and group IV a elements", Physica E: Low-dimensional Systems and Nanostructures, Vol. 120, June 2016, pp. 114040.
[22] Y. Bai, Q. Zhang, G. Luo, Y. Bu, L. Zhu, L. Fan, and B. Wang, "GaS 0.5 Te 0.5 monolayer as an efficient water splitting photocatalyst", Physical Chemistry Chemical Physics, Vol. 19, No.23, May 2017, pp. 15394-15402.
[23] D. J. Late, B. Liu, j. Luo, A. Yan, H. S. S. R. Matte, M. Grayson, C. N. R. Rao, and V. P. Dravid, "GaS and GaSe ultrathin layer transistors", Advanced materials, Vol. 24, No. 26, June 2012, pp. 3549-3554.
[24] H. Chen, Y. Li, L. Huang,and J. Li, "Influential electronic and magnetic properties of the gallium sulfide monolayer by substitutional doping", The Journal of Physical Chemistry C, Vol. 119, No. 52, Dec 2015, pp. 29148-29156.
[25] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. S. –Portal,"The SIESTA method for ab initio order -N materials simulation", Journal of Physics: Condensed Matter, Vol. 14, No. 11, March 2002, pp. 2745.
[26] J. P. Perdew, . Burke, and M. Ernzerhof, "Generalized gradient approximation made simple", Physical review letters, Vol. 77, No. 18, October 1996, pp. 3865.
[27] M. Nayeri, and M. Fathipour,  "A numerical analysis of electronic and optical properties of the zigzag MoS2 nanoribbon under uniaxial strain", IEEE Transactions on Electron Devices, Vol. 65, No. 5, May 2018, pp. 1988-1994.
[28] H. R. Jappor, "Electronic structure of novel GaS/GaSe heterostructures based on GaS and GaSe monolayers", Physica B: Condensed Matter, Vol. 524, November 2017, pp. 109-117.