A minimal electrophysiological model of gastric smooth muscle cell based on effective ionic currents

Document Type : Mechanics article


1 Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.

3 New York Institute of Technology, Department of Electrical and Computer Engineering, Old Westbury, New York, USA.


Electrophysiological cell models are used to study and simulate the electrical behavior of cells. These models are presented by considering the characteristics of cells, channels, and ion currents in the cell membrane. This study aimed to provide a minimal model for gastric smooth muscle cells. Using the sensitivity analysis method in this paper, gastric cell current from the colon cell was obtained based on the approach of Yeoh et al. Then, the minimal model was obtained by identifying effective ion currents and eliminating inefficient ion currents. To evaluate the minimal model, the criteria of slow wave index points (initial potential, maximum spike potential, minimum valley potential, maximum plateau potential, and resting potential) and action potential duration of 10, 50, and 90 were used. Then, These values were compared with the slow wave physiological state of gastric smooth muscle cells. Finally, the minimal model obtained was consistent with the physiological model. The largest difference between the index points in both cases was related to the maximum spike potential with 2.21 millivolt and the action potential duration of 10 with 9 milliseconds. The results obtained by comparing two models of gastric smooth muscle cells (physiological and minimal states) showed the same behavior in slow wave.


[1] S.A. Niederer, J.Lumens and N.A. Trayanova, "Computational models in cardiology", Nature Reviews Cardiology, Vol. 16, No. 2, 2019, pp. 100-111.
[2] R. Piersanti, P.C. Africa, M. Fedele, C. Vergara, L. Dedè, A.F. Corno and A. Quarteroni, "Modeling cardiac muscle fibers in ventricular and atrial electrophysiology simulations", Computer Methods in Applied Mechanics and Engineering, Vol. 373, 2021, pp. 113468.
[3] S.N. Doost, D. Ghista, B. Su, L. Zhong and Y.S. Morsi, "Heart blood flow simulation: a perspective review", BioMedical Engineering OnLine, Vol. 15, No. 1, 2016, p. 101.
[4] G. Tse, E.T. Lai, A.P. Lee, B.P. Yan and S.H. Wong, "Electrophysiological mechanisms of gastrointestinal arrhythmogenesis: lessons from the heart", Frontiers in physiology, Vol. 7, 2016, p. 230.
[5] P. Du, S. Calder, T.R. Angeli, S. Sathar, N. Paskaranandavadivel, G. O'Grady and L.K. Cheng, "Progress in mathematical modeling of gastrointestinal slow wave abnormalities", Frontiers in physiology, Vol. 8, 2018, p. 1136.
[6] R.N. Miftakhov, G.R. Abdusheva and J. Christensen, "Numerical simulation of motility patterns of the small bowel. 1. Formulation of a mathematical model", Journal of theoretical biology, Vol. 197, No. 1, 1999, pp. 89-112.
[7] H. Suzuki, "Cellular mechanisms of myogenic activity in gastric smooth muscle", The Japanese journal of physiology, Vol. 50, No. 3, 2000, pp. 289-301.
[8] A. Corrias and M.L. Buist, "A quantitative model of gastric smooth muscle cellular activation", Annals of biomedical engineering, Vol. 35, No. 9, 2007, pp.1595-1607.
[9] A. Corrias and M.L. Buist, "Quantitative cellular description of gastric slow wave activity", American Journal of Physiology-Gastrointestinal and Liver Physiology, Vol. 294, No. 4, 2008, pp. G989-G995.
[10] P.L. Rhee, J.Y. Lee, H.J. Son, J.J. Kim, J.C. Rhee, S. Kim, S.D. Koh, S.J. Hwang, K.M. Sanders and S.M. WARD, "Analysis of pacemaker activity in the human stomach", The Journal of physiology, Vol. 589, No. 24, 2011, pp. 6105-6118.
[11] Y.C. Poh, A. Corrias, N. Cheng and M.L. Buist, "A quantitative model of human jejunal smooth muscle cell electrophysiology", PLoS One, Vol. 7, No. 8, 2012, p. e42385.
[12] J.W. Yeoh, A. Corrias and M.L. Buist, "Modelling human colonic smooth muscle cell electrophysiology", Cellular and molecular bioengineering, Vol. 10, No. 2, 2017, pp.186-197.
[13] S. Sabzpoushan and Z. Daneshparvar, "A minimal two state variables model for action potential in human ventricular cell", Iranian Journal of Biomedical Engineering, Vol. 7, No. 3, 2013, pp. 187-200.
[14] T. Bahill, Bioengineering--biomedical, Medical, and Clinical Engineering, Prentice Hall, 1981.
[15] A.L. Hodgkin and A.F. Huxley, "A quantitative description of membrane current and its application to conduction and excitation in nerve", The Journal of physiology, Vol. 117, No. 4, 1952, p. 500.
[16] U. Ravens, D. Katircioglu-Öztürk, E. Wettwer, T. Christ, D. Dobrev, N. Voigt, C. Poulet, S. Loose, J. Simon and A. Stein, "Application of the RIMARC algorithm to a large data set of action potentials and clinical parameters for risk prediction of atrial fibrillation", Medical & biological engineering & computing, Vol. 53, No. 3, 2015, pp.263-273.
[17] Y. Richter, P.G. Lind and P. Maass, "Modeling specific action potentials in the human atria based on a minimal single-cell model", PLoS One, Vol. 13, No. 1, 2018, pp. e0190448.
[18] G. O’Grady, P. Du, L.K. Cheng, J.U. Egbuji, W.J. Lammers, J.A. Windsor and A.J. Pullan, "Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping", American Journal of Physiology Gastrointestinal Liver Physiology, Vol. 299, No. 3, 2010, pp. G585–G592.
[19] G. Duthie and A. Gardner, Physiology of the gastrointestinal tract, John Wiley & Sons, 2006.
[20] A. Farajidavar, "Bioelectronics for mapping gut activity", Brain research, Vol. 1693, 2018, pp. 169-173.
[21] A. Naghilou and S.H. Sabzpoushan, "Evaluation of ELF Electric FieldsEffects on Bifurcation Phenomenon of Spaced-Clamped Coductance-Based Minimal CellModels", Asian Journal of Biomedical and Pharmaceutical Sciences, Vol. 3, No. 20, 2013, pp. 8-16.
[22] D.G. Whittaker, M. Clerx, C.L. Lei, D.J. Christini and G.R. Mirams, "Calibration of ionic and cellular cardiac electrophysiology models", Wiley Interdisciplinary Reviews: Systems Biology and Medicine, Vol. 12, No. 4, 2020, p. e1482.
[23] J. Kushner, X. Ferrer and S.O. Marx, "Roles and Regulation of Voltage-gated Calcium Channels in Arrhythmias", The Journal of Innovations in Cardiac Rhythm Management, Vol. 10, No. 10, 2019, p. 3874.
[24] اسماعیل رحیم پور، بهمن وحیدی و زهرا ملاحسینی، «بررسی عددی رفتار کرنش سختی سلول‌های بنیادی مزنشیمال بر روی بسترهای الاستیک»، مجلة مدل‌سازی در مهندسی، دورة 16، شمارة 55، زمستان 1397، صفحة 351-359.
[25] مائده رحیم‌نژاد، بهمن وحیدی، بهمن ابراهیمی حسین‌زاده و فاطمه یزدیان، «شبیه‌سازی دینامیک مولکولی برهمکنش داروی ضدّ سرطان پاکلیتاکسل با غشای سلولی: بررسی تغییرات انرژی واندروالسی و فاصله مرکز جرم»، مجلة مدل‌سازی در مهندسی، دورة 17، شمارة 57، تابستان 1398، صفحة 15-25.
[26] پانیذ تیموری، مهدی مزینانی و راحیل حسینی، «ارائة یک مدل هوشمند قطعه‌بندی مبتنی بر منطق فازی و تبدیل موجک گسسته در تصاویر دیجیتالی جهت شناسایی سرطان معده»، مجلة مدل‌سازی در مهندسی، دورة 18، شمارة 63، زمستان 1399، صفحة 131-150.
[27] H. Taghadosi, F.T. Ghomsheh, N.J. Dabanloo and A. Farajidavar, "Electrophysiological modeling of the effect of potassium channel blockers on the distribution of stimulation wave in the human gastric wall cells", Journal of Biomechanics, Vol. 127, 2021, p. 110662.