Presenting A New Method for Identifying the Initial Events of Cascading Failures with the Aim of Analyzing the Vulnerability of the Power System

Document Type : Power Article

Authors

1 Ph.D. Student, Department of Electrical Engineering, Islamic Azad University, Saveh Branch, Saveh, Iran

2 Department of Technical Engineering, Islamic Azad University, Saveh, Iran

3 Professor, Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.

Abstract

Cascading failures are one of the most destructive states in the power systems, which may initially start with a small error and then spread with a chain effect like a domino, leading to large-scale blackouts. Therefore, it is necessary to prevent cascading failures, because our daily lives depend heavily on a stable and reliable power supply network. So far different methods have been proposed to identify the initial events of cascade failures, including fault-prone lines and transformers, with the aim of taking remedial action scheme to reduce the adverse effects of cascade failure. In this paper, several well-known methods with the potential to detect initial events that lead to catastrophic cascading failures are first implemented of the IEEE 39-bus test system and the Competencies and shortcomings of methods are compared. In the following, a new method is presented with appropriate speed and accuracy compared to other methods. The enumeration method based on William Fine risk assessment technique is used to validate the results of different methods. The enumeration method is a difficult and time-consuming method. Therefore, in order to reduce the dimensions of the mentioned method in order to validate the methods more appropriately and faster, the William Fine risk assessment technique is used. This technique identifies and ranks the potential and effective initial events in creating the chain of cascading failures in the power system by calculating the risk assessment score of combinations of possible N-K(1<K≤3) contingencies.

Keywords


[1] D.P. Nedic, I. Dobson, D.S. Kirschen, B.A. Carreras and V.E. Lynch ,"Criticality in a cascading failure blackout model", International Journal of Electrical Power and Energy Systems, Vol. 28, No. 9, November 2006, pp. 627-633.
[2] G. Doorman, K. Uhlen, G. Kjolle and E.S. Huse, "Vulnerability Analysis of the Nordic Power System", IEEE General Meeting Power& Energy Society, Montreal, Que., Canada, June 2006.
[3] P. Hines, I. Dobson and P. Rezaei,"Cascading Power Outages Propagate Locally in an Influence Graph that is not the Actual Grid Topology", IEEE Transactions on Power Systems, Vol. 32, No. 2, March 2017, pp. 958 – 967.
[4] M. Wei, Z. Lu and W. Wang, “Dominoes with communications: On characterizing the progress of cascading failures in Smart Grid”, IEEE International Conference on Communications (ICC) for the Smart Grid, Kuala Lumpur, Malaysia, May 2016.
[5] J. Yan, H. He and Y. Sun, "Integrated security analysis on cascading failure in complex networks," IEEE Transactions on Information Forensics and Security, Vol. 9, No. 3, 2014, pp. 451-463.
]6[ علی حسامی نقشبندی، صابر ارمغانی و سید محمد شهرتاش، «حل مسئلة طرح توسعة شبکة انتقال به‌منظور کاهش اثرات نامطلوب خرابی آبشاری با رویکرد تحلیل و ارزیابی آسیب‌پذیری شبکه‌های انتقال»، مجلة مدل‌سازی در مهندسی، دورة 12، شمارة 58، پاییز  1398، صفحة 143-157.
]7[ جمشید آقایی، امین رحیمی رضایی و محمدرضا کریمی، «هماهنگی نیروگاه‌های بادی و دستگاه‌های ذخیره‌ساز سیستم قدرت در مسئلة برنامه‌ریزی امنیت-مقیّد مشارکت واحدها با استفاده از بهینه‌سازی استوار»، مجلة مدل‌سازی در مهندسی، دورة 16، شمارة 53، تابستان 1397 ، صفحة 207-220 .
[8] H. Guo, C. Zheng, H. Ching and T. Fernando, "A critical review of cascading failure analysis and modeling of power system", Renewable and Sustainable Energy Reviews, Vol. 80, 2017, pp. 9-22.
[9] Z. Guohua, W. Ce, Z. Jianhua, Y. Jingyan, Z. Yin and D. Manyin, “Vulnerability Assessment of Bulk Power Grid Based on Complex Network Theory”, 3th International Conference on Deregulation, Restructuring, and Power Technologies, Nanjing, China, April 2008, pp. 2443–2451.
[10] W. Kröger and E. Zio, "Vulnerable Systems", Springer-Verlag London Limited 2011.
[11] C. Pang, "Fast Detection and Mitigation of Cascading Outages in The Power System", Ph.D. Thesis, Dept. Electrical and Computer Engineering, University of Texas A&M, December 2011.
[12] C. Matthew Davis and T. J. Overbye, "Multiple Element Contingency Screening", IEEE Transactions on Power Systems, Vol. 26, No. 3, August 2011, pp. 1294–1301.
 [13] H. Song and M. Kezunovic, "A new analysis method for early detection and prevention of cascading events", Electric Power System Research, Vol. 77, No. 8, June 2007, pp. 1132–1142.
[14] F. Fonteneau-Belmudes, D. Ernst and L. Wehenkel, “Cross-entropy based rare-event simulation for the identification of dangerous events in power systems”, 10th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS-08) , Rincon, Puerto Rico, 2008.
[15] G. Kron, Diakoptics: The Piecewise Solution of Large-Scale Systems, MacDonald & Co Publishing, New York, NY, USA, 1963.
[16] N. Bhatt and et al, “Assessing Vulnerability to Cascading Outages”, IEEE/PES Power Systems Conference and Exposition, Seattle, WA, USA, March 2009, pp.1-9.
[17] Andrea M. Rei, Marcus Th. Schilling and Albert C. G. Melo, "Monte Carlo Simulation and Contingency Enumeration in Bulk Power Systems ReliabilityAssessment", 9th International Conference on Probabilistic Methods Applied to Power Systems KTH, Stockholm, Sweden , June 2006.
[18] H. Suh and C.K. Chang, “Algorithms for the Minimal Cutsets Enumeration of Networks by Graph Search and Branch Addition”, 25th Annual IEEE Conference on Local Computer Networks (LCN), Florida, USA, 2000, pp. 100-107.
[19] S. Armaghani, A. Hesami Naghshbandy and S.M. Shahrtash, "A novel multi-stage adaptive transmission network expansion planning to countermeasure cascading failure occurrence", International Journal of Electrical Power & Energy Systems, Vol. 115, February 2020.
[20] C. Caro-Ruiz, J. Ma, D.J. Hill, A. Pavas and E. Mojica-Nava, "A minimum cut-set vulnerability analysis of power networks", Sustainable Energy, Grids and Networks (SEGAN), Vol. 21, March 2020.
]21 [مهدی درفشیان مرام و نیما امجدی، «جلوگیری از رخداد ناپایداری‌های گذرا و ولتاژ با استفاده از یک طرح اقدامات اصلاحی مبتنی بر قطع تولید و حذف بار»، مجلة مدل‌سازی در مهندسی، دورة 14، شمارة 46، پاییز 1395، صفحة 137-150.
[22] E. Sekhavati, M. Mohammadizadeh, I. Mohammadfam and A. Faghihi Zarandi, "Noise Pollution Risk Assessment in Cement Factory of Larestan Using William Fine Method", Journal of Applied Environmental and Biological Sciences, Vol. 5, No. 8, 2015, pp. 208-213.
]23 [سید علی جوزی، نعمت‌الله جعفرزاده حقیقی فرد و نگار افضلی بهبهانی، «کاربرد روش ویلیام فاین در شناسایی و طبقه‌بندی ریسک‌های ایجادشده از دکل‌های ولتاژ بالا در مناطق شهری»، اولین کنفرانس ملی بهداشت، ایمنی و محیط زیست، دانشگاه آزاد اسلامی واحد ماهشهر، آبان 1391.
[24] A. Abedi, L. Gaudard and F. Romerio, "Review of major approaches to analyze vulnerability in power system", Journal of Reliability Engineering & System Safety, Vol. 183, March 2019, pp. 153-172.
[25] A.V. Goldberg and R.E. Tarjan, "A New Approach to the Maximum-Flow Problem", Journal of the Association for Computing Machinery, Vol. 35, No. 4, October 1988, pp. 921-940.
[26] M. Josefsson and M. Mützell, "Max Flow Algorithms Ford-Fulkerson, Edmond-Karp, Goldberg-Tarjan Comparison in regards to practical running time on different types of randomized flow networks", Degree Project in Computer Science, DD143X, Sweden, Stockholm , 2015.
[27] J. Fang, C. Su, Z. Chen, H. Sun and P. Lund, "Power System Structural Vulnerability Assessment based on an Improved Maximum Flow Approach", IEEE Transactions on Smart Grid, Vol. 9, No. 2, March 2018, pp. 777-785.
[28] A. Dwivedi, X. Yu and P. Sokolowski, “Analyzing power network vulnerability with maximum flow based centrality approach”, 8th IEEE International Conference on Industrial Informatics (INDIN), Osaka, Japan, Jul. 2010, pp. 336–341.
[29] Mathworks, “graphmaxflow,” Bioinformatics Toolbox. [Online] Available: http://www.mathworks.com/help/bioinfo/ref/graphmaxflow. html.
[30] J.V. Varnere, Occupational risk analysis of Samandile pipe manufacturing in constructional phase: of Strasburg University. 1(9): 109-21, 2007.
[31] H.H.Goh, and B.C.Kok, “Application of Analytic Hierarchy Process (AHP) in Load Shedding Scheme for Electrical Power System”, 9th International Conference on Environment and Electrical Engineering, Prague, Czech Republic, May 2010.
]32 [سید علی جوزی، نعمت‌الله جعفرزاده حقیقی فرد و نگار افضلی بهبهانی، «شناسایی و ارزیابی ریسک مخاطرات ناشی از خطوط انتقال برق ولتاژ بالا در مناطق مسکونی با استفاده از روش تجزیه‌ و تحلیل حالات شکست و اثرات آن (FMEA)»، فصل‌نامة انجمن علمی بهداشت محیط ایران، دورة 7، شمارة 1، بهار 1393، صفحة 55-64 .
[33] Matpower Home Page, Online: "www.Pserc.cornell.edu/matpower".