Coupled simulation of convection section and the fluid flow in the furnace tubes H-151 of Distillation Unit of Esfahan Refinery by CFD

Document Type : Chemistry Article

Authors

1 Coupled simulation of convection section and the fluid flow in the furnace tubes H-151 of Distillation Unit of Esfahan Refinery by CFD

2 Department of Chemical Engineering, Shahid Nikbakht Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Abstract

In this paper, the simulation of the displacement enclosure of the H-151 furnace unit of the distillation unit in the Isfahan refinery is carried out by using computational fluid dynamics (CFD). This simulation involves simultaneous investigation of fluid flow inside the tubes of displacement enclosure and the flue gas flow of convection section through the tubes as well as displacement enclosure gas flow by adding additional tubes in a two-dimensional state. Grid independency study was done for tube and displacement enclosure and the best grid with numbers of 315000 and 67024 were chosen for tube and displacement enclosure, respectively. The error of temperature and velocity diagrams for tubes with grid numbers 315000 were 0.021% and 0.0569% and for displacement enclosure with grid numbers, 67024 were 0.0712% and 0.0254%, respectively. The velocity and temperature diagrams for the tube, displacement enclosure, and displacement enclosure with additional tubes were obtained and examined. The results show that the flow at the beginning of the tube is turbulent. The fluid velocity inside the tube has been developed from 1.4 meters due to the large length of the tube. The comparison of the results obtained from the displacement enclosure with/without additional tubes has been shown that the temperature and velocity of the gas passing through the tubes are reduced by using additional tubes.

Keywords


[1] P. Mullinger, B. Jenkins, “Industrial and process furnaces principles”, design and operation, First edition, Elsevier, 2008.
[2] نکیسا یعقوبی، سیاوش سیدنژادیان و رامین مغرضی، «سینتیک و پدیدههای انتقال و جفت شدن اکسایشی متان: مدلسازی CFD در مقیاس دانه ای»، مجله مدلسازی در مهندسی، دوره 12 ،شماره 39 ،زمستان 1393 ،صفحه 123-141.
[3] سید حسین حسینی و اشکان محصلی، «مطالعه انتقال حرارت از دیواره بستر حبابی گاز-جامد به ذرات جامد درون آن به کمک دینامیک سیالالت محاسباتی»، مجله مدلسازی در مهندسی، دوره 14 ،شماره 46 ،پاییز 1395 ،صفحه 123-136.
[4] رحمان زینالی، کامران قاسم زاده و علیرضا بهروز سرند، «مدلسازی عملکرد غشای نانوساختار گرافنی جهت جداسازی هیدروژن به کمک روش دینامیک سیالات محاسباتی»، دوره 16، شماره 55، زمستان 1397، صفحه 77-86.
[5] T. Taha, and Z. F. Cui, “CFD modelling of slug flow in vertical tubes”, Chemical Engineering Science, Vol. 61, 2006, pp. 676-687.
[6] C. M. Schietekat, M. M. Van Geothem, K. M. Van Geem, and G.B. Marin, “Swirl flow tube reactor technology: An experimental and computational fluid dynamics study”, Chemical Engineering Journal, Vol. 238, 2014, pp. 56-65.
[7] B. C. Nguyen, Q. V. Pham, M. G. Normah, and J. T. Oh, “Convective heat transfer characteritics of single phase liquid in multiport minichannel tube: Experiment and CFD simulation”, Energy Procedia, Vol. 75, 2015, pp. 3180-3185.
[8] M. Landfahrer, R. Prieler, B. Mayr, H. Gerhardter, R. Schongrundner, R. Klarner, and C. Hochenauer, “Development of a numerically efficient CFD model to predict transient temperature distribution of mother tubes moving translative and rotative through a gas fired furnace”, Applied Thermal Engineering, Vol. 123, 2017, pp. 290-300.
[9] Y. L. Han, R. Xiao, and M. Y. Zhang, “Combustion and pyrolysis reactions in a naphtha cracking furnace”, Chem. Eng. Technol, Vol. 29, 2006, pp. 112–120.
[10] R. Vuthaluru, and H. B. Vuthaluru, “Modeling of a wall fired furnace for different operating conditions using FLUENT”, Fuel Process, Technol., Vol. 87, 2006, pp. 633–639.
[11] A. Gomez, N. Fueyo, and L. Ignacio Diez, “Modelling and simulation of fuid flow and heat transfer in the convective zone of a power-ganeration boiler”, Applied Thermal Engineering, Vol. 28, 2008, pp. 532-546.
[12] E. Keshavarz, D. Toghraie, and M. Haratian, “Modeling industrial scale reaction furnace using computational fluid dynamics: A case study in Ilam gas treating plant”, Applied Thermal Engineering, Vol. 123, 2017, pp. 277-289.
[13] Z. Fang, T. Qiu, and W. Zhou, “coupled simulation zonal firebox model and detailed kinetic reactor model in an industrial ethylene cracking furnace”, Chines Journal of Chemical Engineering, Vol. 25, 2017, pp. 1091-1100.
[14] A. Haghighieh Asl, and M. Sadr Ameli, “Development of thermal models to simulate the radiation section of thermal furnaces”, Master Thesis, Tarbiat Modares University, Faculty of Engineering, 1995.
[15] Z. S. Hosseini, M. Farsi, and M. Rahimpour, “Dynamic modeling and multi-objective optimization of naphtha heat failure furnace for ethylene production considering the inhibitory effect of coke deposition”, M.Sc. Thesis, Shiraz University, Faculty of Chemical Engineering, 2016.
[16] H. Hosseinzadeh, and N. Rezazadeh, “Evaluation of two-equation turbulence models in the discussion of heat transfer in heat treatment furnaces”, Cement, 2016, pp. 17-28.
[17] M. Raouf, M. Farsi, P. Sotoudeh, and M. R. Rahimpour, “Simulation and Optimization of 2,1 Dichloroethane Heat Fracture Furnace”, M.Sc. Thesis, Shiraz University, Faculty of Chemical, Oil and Gas Engineering, 2018.
[18] R. Firoozi, and H. Nazif, “Reducing the heat loss of natural gas dehumidification furnace by combining methods of exergy analysis and computational fluid dynamics (CFD) (Case study: Furnace Unit 104 of Parsian Gas Refining Company)”, M.Sc. Thesis, Imam International University Khomeini (RA) Faculty of Engineering, 2019.
[19] M. Landfahrer, R. Prieler, B. Mayr, H. Gerhardter, R. Schongrundner, R. Klarner, and C. Hochenauer, “Development of a numerically efficient CFD model to predict transient temperature distribution of mother tubes moving translative and rotative through a gas fired furnace”, Applied Thermal Engineering, Vol. 123, 2017, pp. 290-300.