Wide-Area Protection of Power Transmission Network without Utilizing External Network Model and Synchronized Phasor Measurement

Document Type : Power Article

Author

Department of Electrical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.,

Abstract

Wide-area protection of electric power transmission networks against faults was the main motivation behind the invention of synchronized phasor measurements. However, global positioning system (GPS) signal loss and synchronization errors on the one hand and variability of external network parameters on the other hand have prohibited utilization of wide-area protection of transmission network. This paper introduces a novel approach for wide-area protection in order to address the above-mentioned problems. By utilizing the measurements provided by phasor measurement units (PMU) located at border substations of the internal protected network, the proposed approach will be independent of external network parameters. Moreover the proposed formulation avoids using phase angle of PMU measurements, as opposed to existing methods that are vulnerable to loss or incorrect value of even one of phase angles of voltage/current synchrophasors. Another advantage of the proposed approach is avoidance of zero-sequence network parameters as well as identifying the faulted line regardless of fault type and its resistance. Simulation studies for the 9-bus Western Systems Coordination Council (WSCC) confirm high accuracy of the proposed approach in identifying the faulted transmission line.

Keywords


[1] J. Ma and Z. Wang. Hierarchical Protection for Smart Grids. John Wiley & Sons, 2018.
[2] V. Terzija, G. Valverde, D.  Cai, P. Regulski, V. Madani, J. Fitch, S. Skok, M. Begovic and A. Phadke, “Wide-area monitoring, protection, and control of future electric power networks,” Proceedings of the IEEE, Vol. 99, No. 1, 2010, pp. 80-93.
] 3[ مصطفی سرلک و داریوش فرهادی، "مدلی هوشمند بر پایه تحلیل فضای فاز برای دسته‌بندی خطا در خطوط انتقال تک‌مداره"، نشریه مدل‌سازی در مهندسی، دوره 18، شماره 60، بهار 1399.
[4] P. M. Anderson, Power System Protection, Wiley Press, 1998.
[5] S. Horowitz and A. Phadke, “Third zone revisited,” IEEE Transactions on Power Delivery, Vol. 21, No. 1, 2006, pp. 23–29.
[6] A. G. Phadke and J. S. Thorp, Synchronized phasor measurements and their applications, Springer Science & Business Media, 2008.
[7] J. De La Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, “Synchronized phasor measurement applications in power systems,” IEEE Transactions on Smart Grid, Vol. 1, No. 1, 2010, pp. 20–27.
[8] M. Chen, H. Wang, S. Shen, and B. He, “Research on a distance relay based wide-area backup protection algorithm for transmission lines,” IEEE Transactions on Power Delivery, Vol. 32, No. 1, 2017, pp. 97–105.
[9] J. Ma, C. Liu, and J. S. Thorp, “A wide-area backup protection algorithm based on distance protection fitting factor,” IEEE Transactions on Power Delivery, Vol. 31, No. 5, 2016, pp. 2196–2205.
[10] M. G. Adamiak, A. P. Apostolov, M. M. Begovic, C. F. Henville, K. E. Martin, G. L. Michel, A. G. Phadke, and J. S. Thorp, “Wide area protection–technology and infrastructures,” IEEE Transactions on Power Delivery, Vol. 21, No. 2, 2006, pp. 601–609.
[11] S. Horowitz, A. Phadke, and J. Thorpe, “Adaptive transmission system relaying,” IEEE Transactions on Power Delivery, Vol. 3, No. 4, 1988, pp. 1436–1445.
[12] M. A. Aftab, S. Roostaee, S. S. Hussain, I. Ali, M.S. Thomas and S. Mehfuz, “Performance evaluation of IEC 61850 GOOSE-based inter-substation communication for accelerated distance protection scheme,” IET Generation, Transmission & Distribution, Vol. 12. No. 18, 2018, pp.4089-4098.
[13] M. M. Eissa, M.M. Mahfouz and G. M. A. Sowilam, “A new developed smart grid protection technique with wind farms based on positive sequence impedances and current angles,” Electric Power Systems Research, Vol. 178, 2020, p.106020.
[14] Z. He, Z. Zhang, W. Chen, O. P. Malik, and X. Yin, “Wide-area backup protection algorithm based on fault component voltage distribution,” IEEE Transactions on Power Delivery, Vol. 26, No. 4, 2011, pp. 2752–2760,.
[15] J. Zare, F. Aminifar, and M. Sanaye-Pasand, “Synchrophasor-based wide-area backup protection scheme with data requirement analysis,” IEEE Transactions on Power Delivery, Vol. 30, No. 3, 2015, pp. 1410–1419.
[16] M. K. Neyestanaki and A. M. Ranjbar, “An adaptive PMU-based wide area backup protection scheme for power transmission lines,” IEEE Transactions on Smart Grid, Vol. 6, No. 3, 2015, pp. 1550–1559.
[17] S. Azizi and M. Sanaye-pasand, “From available synchrophasor data to short-circuit fault identity: Formulation and feasibility analysis,” IEEE Transactions on Power Systems, Vol. 32, No. 3, 2017, pp. 2062–2071.
[18] S. Azizi, S., G. Liu, A. S. Dobakhshari and Terzija, V., “Wide-area backup protection against asymmetrical faults using available phasor measurements,” IEEE Transactions on Power Delivery, Vol. 35, No. 4, 2019,  pp.2032-2039.
[19] A. Mousavi, S. A. E., Chabanloo, R. M., Farrokhifar, M., & Pozo, D., “Wide area backup protection scheme for distance relays considering the uncertainty of network protection,” Electric Power Systems Research, Vol. 189, 106651, 2020.
[20] S. R. Samantaray and A. Sharma A, “Enhancing performance of wide-area back-up protection scheme using PMU assisted dynamic state estimator,” IEEE Transactions on Smart Grid, Vol. 10, No. 5, 2018, pp. 5066-5074.  
[21] A. Ghaedi and M. E. Hamedani Golshan, “Modified WLS three-phase state estimation formulation for fault analysis considering measurement and parameter errors,” Electric Power Systems Research, Vol. 190, 2021, 106854.  
[22] M. Ahmadinia and J. Sadeh, “A modified wide-area backup protection scheme for shunt-compensated transmission lines,” Electric Power Systems Research, Vol. 183, 2020, 106274.  
] 23[ ح. برزوئی، م. رجبی مشهدی و ه. مرتضوی، "بهبود امنیت شبکه انتقال با پیاده سازی سیستم حفاظت و کنترل منطقه گسترده توسط پروتکل IEC 61850"، سیزدهمین کنفرانس حفاظت و اتوماسیون در سیستم‌های قدرت، دانشگاه صنعتی شریف، 1397.
[24] W. Yao, D. Zhou, L. Zhan, Y. Liu, Y. Cui, S. You and Y. Liu, “GPS signal loss in the wide area monitoring system: Prevalence, impact, and solution,” Electric Power Systems Research, Vol. 147, 2017 pp.254-262.
[25] D. Shi, D. J. Tylavsky and N. Logic, “An adaptive method for detection and correction of errors in PMU measurements,” IEEE Transactions on Smart Grid, Vol. 3, No. 4, 2012, pp.1575-1583.
[26] L. Vanfretti, J. H. Chow, S. Sarawgi  and B. Fardanesh, “A phasor-data-based state estimator incorporating phase bias correction,” IEEE Transactions on Power Systems, Vol. 26, No. 1, 2011, pp.111-119.
[27] A. Xue, F. Xu, K. E. Martin, H. You, J. Xu, L. Wang and G. Wei, “Robust identification method for transmission line parameters that considers PMU phase angle error,” IEEE Access, Vol. 8, 2020, pp.86962-86971.
] 28[ هادی سعادت، ترجمه ح. شایانفر، ش. جدید و ا. کاظمی، بررسی سیستم‌های قدرت، جلد دوم، انتشارات دانشگاه علم و صنعت ایران،  چاپ 7، 1391.
[29] A. G. Phadke and J. S. Thorp, Computer relaying for power systems, John Wiley & Sons, 2009.
] 30[ زهرا مروج، مجتبی قرجه لو و کاظم مظلومی، "هماهنگی بهینه رله‌های دیستانس و اضافه جریان جهتی با استفاده ازالگوریتم ژنتیک"، نشریه مدل سازی در مهندسی، دوره 15، شماره 48، بهار 1396، صفحه 201- 216.
] 31[ محمود لشگری و سید محمد شهرتاش،  "حفاظت فوق سریع باس‌بار مبتنی بر تبدیل آنلاین زمان-زمان"، نشریه مدل سازی در مهندسی، دوره 16، شماره 53، تابستان 1397، صفحه 135-147.
[32] Instrument transformers-part 3: Additional requirements for inductive volatge transformers,” IEC 61869-3, 2011.
[33] Instrument transformers-part 2: Additional requirements for current transformers,” IEC 61869-2, 2012.
[34] A. S. Dobakhshari, “Fast accurate fault location on transmission system utilizing wide-area unsynchronized measurements,” International Journal of Electrical Power & Energy Systems, Vol. 101, 2018, pp. 234-242.