Computer Simulation of Doppler Ultrasound Blood Flow Signals Related to Stenosed Vessels Using Simulation of Pulsatile Blood Flow Behavior in Vessels with Various Stenosis Degrees

Document Type : Power Article

Authors

1 Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.BOX: 11365-8486, Tehran, Iran

2 Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran.

Abstract

In this study, a method has been proposed to model doppler ultrasound signals from blood flow passing through stenosed vessels using simulation of RF signals obtained from scattering points (Red blood cells) in different times and depths. In this model, it is supposed that several scattering points are randomly distributed in the vessel. The scattering points can be located in new positions based on their velocity in any time. Therefore, doppler Effect can be observed in anytime, with changing of received signals shape obtained from moving scatterers. The velocity profile of the scattering point was determined by modeling the blood flow pattern through arteries to further elucidate the Doppler spectrum of the applied ultrasound signals. A cosine stenosis shape was considered using Tu & Devil model as it is sufficiently similar to the normal shape of stenosis in the arteries. The input flow to the stenosed zone was the same as the pulsatile blood flow in the vessel, based on the Womersley model. As a result, changing of flow intensity and Reynolds number are very similar to reality. For similarity of considered fluid to blood fluid, the intended fluid is used in the form of non-Newtonian fluid. Investigation of the estimated velocity profile compared with the applied input value led to the error rate of 6% for both normal and stenosed (70%) cases, confirming the accuracy of this model and the method for simulating doppler signal.

Keywords

Main Subjects


[1] G. Pontrelli, "Pulsatile Blood Flow in a Pipe", Computers & Fluids, Vol. 27, NO. 3, March 1998, pp. 367-380.
[2] G. Kumar, H. Kumar, K. Mandia, M. Zunaid, N. A. Ansari and A. Husain, “Non-Newtonian pulsatile flow through an artery with two stenosis”. Materials Today: Proceedings. 2021 Mar 2.
[3] S.A. Ahmed, and D.P. Giddens, "Pulsatile flow studies with laser Doppler anemometry", Journal of biomechanics, Vol. 17, NO. 9, January 1984, pp. 695-705.
[4] M. Siouffi, P. Peronneau, E. Wildt, and R. Pelissier, "Modifications of flow patterns induced by a vascular stenosis", Proceedings of Euromech, Vol. 92, NO. 1, November 1977, pp.73-88.
[5] C. Tu, M. Deville, L. Dheur, and L. Vanderschuren, "Finite element simulation of pulsatile flow through arterial stenoses", Journal of Biomechanics, Vol. 25, NO. 10, October 1992, pp. 1141-1152.
[6] مازیار دهقان، مصطفی میرزایی، محمدصادق ولی پور و سیف‌الله سعدالدین، "جریان سیال غیر نیوتنی بر روی مرز با سرعت متغیر و در شرایط ناپایا؛ ارائه متغیر تشابهی و روش حل نوین"، نشریه مدل‌سازی در مهندسی، دوره 12، شماره 39، زمستان 1393، صفحه             113- 122.
[7] I. Marshall, S. Zhao, P. Papathanasopoulou, P. Hoskins, and X.Y. Xu, "MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models", Journal of Biomechanics, Vol. 37, NO. 5, May 2004, pp. 679-687.
[8] D.A. Steinman, J.B. Thomas, H.M. Ladak, J.S. Milner, B.K. Rutt, and J.D. Spence, "Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI", Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, Vol. 47, NO. 1, January 2002, pp. 149-159.
[9] T. Ishikawa, L.F. Guimaraes, S. Oshima, and R. Yamane, "Effect of Non-Newtonian Property of Blood on Flow through a Stenosed Tube", Fluid Dynamics Research, Vol. 22, NO. 5, May 1998, pp.251-264.
[10] محمد شریفی اصل، داود طغرایی و احمد رضا عظیمیان، "شبیه سازی عددی انتقال حرارت جابه جایی در جریان مغشوش غیرنیوتنی نانوسیال در یک لوله افقی مدور"، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 53، تابستان 1397، صفحه 113- 120.
[11] V. Carvalho, D. Pinho, R. A. Lima, J. C. Teixeira and S. Teixeira, “Blood flow modeling in coronary arteries: A review”. Fluids, Vol. 6, NO. 2, February 2021. pp. 53.
[12] S. Ghofrani, M.R. Jahed-Motlagh, and A. Ayatollahi, "An adaptive speckle suppression filter based on nakagami distribution", International Conference on Trends in Communications, Bratislava, Slovakia, Vol. 1, July 2001, pp. 84-87.
[13] R. Izzetti, S. Vitali, G. Aringhieri, M. Nisi, T. Oranges, V. Dini, Ferro F and M. Gabriele, “Ultra-high frequency ultrasound, a promising diagnostic technique: review of the literature and single-center experience”, Canadian Association of Radiologists Journal, Vol. 72, NO. 3, August 2021; pp. 418-31.
[14] E. D. Übeylı and I. Güler, “Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA methods”, Computers in biology and medicine, Vol. 34, NO. 4, June 2004, pp. 293-306.
[15] J.R. Buchanan Jr, C. Kleinstreuer, and J.K. Comer, "Rheological Effects on Pulsatile Hemodynamics in a Stenosed Tube", Computers & Fluids, Vol. 29, NO. 6, April 2000, pp. 695-724.
[16] سجاد اسلامی و مهدی محسنی، "اثر مدل توربولانس بر شبیه سازی عددی جریان آشفته نانوسیال در یک لوله افقی"، نشریه مدل‌سازی در مهندسی، دوره 17، شماره 58، پاییز 1398، صفحه 279- 293.
[17] J.G. Neuwirth, "Pressure and Velocity Fluctuations Associated with the Flow Through a Stenosis with Upstream Roughness", IEEE Transactions on Biomedical Engineering, Vol. 24, NO. 3, May 1977, pp. 269-727.
[18] J.A. Jensen, Estimation of blood velocities using ultrasound: a signal processing approach, 2th ed., Cambridge University Press, UK, 1996.
[19] H. Yamaguchi, Engineering Fluid Mechanics, 2th ed., Springer Science & Business Media, Berlin, 2008.
[20] S. C. Low, N. Eshtiaghi, L. Shu and R. Parthasarathy, “Flow patterns in the mixing of sludge simulant with jet recirculation system”, Process safety and environmental protection, Vol. 112, NO. 5, November 2017, pp. 209-21.
[21] R. Ershadnia, M. A. Amooie, R. Shams, S. Hajirezaie, Y. Liu, S. Jamshidi and M. R. Soltanian, “Non-Newtonian fluid flow dynamics in rotating annular media: Physics-based and data-driven modeling”, Journal of Petroleum Science and Engineering, Vol. 185, NO. 7, February 2020, pp. 106641.
[22] A. Hajjam, and H. Behnam, "A Modified Time-Domain Approach for Modelling the Ultrasound Signal from Blood-Flow", Ultrasound, Vol. 16, NO. 3, August 2008, pp. 160-164.
[23] M.B. Khodabakhshi, and H. Behnam, "A new method for simulation of emblic signal in ultrasound blood flow signals", In 2010 17th Iranian Conference of Biomedical Engineering, Isfahan, Iran, Vol.17, November 2010, pp. 1-3.
[24] L. Løvstakken, “Signal processing in diagnostic ultrasound: Algorithms for real-time estimation and visualization of blood flow velocity”. Norwegian University of Science and Technology: Trondheim, Norway. 2007.
[25] E.L. Lehmann, and G. Casella, Theory of Point Estimation, 2th ed., Springer Science & Business Media, Berlin, 2006.
[26] M.R. Spiegel, J.J. Schiller, R.A. Srinivasan, and M. LeVan, Probability and Statistics, 2th ed., Mcgraw-hill, USA, 1980.