A dynamic Approach for Modeling the Amount of Soft Tissue Viscoelasticity with respect to Its Momentary Status

Document Type : Power Article

Authors

1 Department of Electrical Engineering, Shahreza Campus, University of Isfahan,, Iran

2 Department of Electrical Engineering, Shahreza Campus, University of Isfahan, Iran

Abstract

One of the recent challenges in modeling is to determine and explain the behavior of a viscelastic material such as soft tissue. In order to correlate the soft tissue stress and strain, fractional order calculus is used as a promising approach. The tendency of soft tissue to behave as a pure viscous or pure elastic material is expressed by a parameter called order. Although stress and strain, as well as the order, are all functions of time, the purpose of this paper is to identify the order as a function of the state of the material. Therefore, it is necessary to somehow eliminate the time relationship between the order and the stress and strain pair and express the fractional order as a function of the momentary stress-strain. Here, this functionality considered as a dynamic model. To validate the proposed model, a state-space model is extracted using the results of previous studies estimated the order as an explicit function of time. The results of this novel dynamic model are then compared with the former methods. The obtained results show the efficiency of the proposed model.

Keywords

Main Subjects


  • [1] فرهاد طالبی، رحیم یار هریس، داوود اسدیان، "بررسی شرایط دمایی یک بافت زنده به منظور تشخیص تومورهای سرطانی"، نشریه مدل‌سازی در مهندسی، دوره 2، شماره 16، 1387.

    [2] میلاد مهدیان، علیرضا سیف زاده، علی مختاریان، فریده درودگر، "مشخصه یابی قرنیه انسان با بکار بردن مدل ناهمسانگرد تقویت شده با فیبر توسط روش اجزاء محدود معکوس"، نشریه مدل‌سازی در مهندسی، دوره 19، شماره 65، تابستان 1400.

    • Ates, Mutlu, and Yigit Akin. "Robotic bilateral partial adrenalectomy." World Journal of Urology (2021):  1-3.
    • Abolhassani, M.Moallem, “Needle insertion into soft tissue: A survey”, Medical Engineering & Physics, Vol.29,2000, pp.413–431.
    • Alterovitz, et al , “Needle insertion and radioactive seed implantation in human tissues: Simulation and sensitivity analysis”, In Robotics and Automation, Proceedings. ICRA03, IEEE International Conference on, Vol. 2, 2003, pp. 1793-1799
    • Telera, Laura Raus, Valerio Pipola, Federico De Iure, and Alessandro Gasbarrini. "Innovative Brachytherapy Techniques and Radiofrequency Ablation." In Vertebral Body Augmentation, Vertebroplasty and Kyphoplasty in Spine Surgery, pp. 211-230. Springer, Cham, 2021.
    • Andrikakou, K. Vickraman, H. Arora, “On the behavior of lung tissue under tension and compression”, Scientific reports, Vol.6, 2016.
    • Dai, “A model of lung parenchyma stress relaxation using fractional viscoelasticity”, Medical engineering & physics, Vol.8, No.37, 2015, pp.752-758.
    • Emamian, Farzaneh Aghajani, Farzaneh Safshekan, and Mohammad Tafazzoli-Shadpour. "Nonlinear viscoelastic properties of human dentin under uniaxial tension." Dental Materials37, no. 2 (2021): e59-e68.
    • Capilnasiu, Lynne Bilston, Ralph Sinkus, and David Nordsletten. "Nonlinear viscoelastic constitutive model for bovine liver tissue." Biomechanics and modeling in mechanobiology (2020): 1-22.

    [11] روح اله زنگانه، علیرضا کرامت، احمد احمدی،  "تاثیر مشخصات تکیه گاه ویسکوالاستیک مدلسازی شده با مدل جامع کلوین- ویت بر ارتعاش محوری میله"، نشریه مدل‌سازی در مهندسی، دوره 13، شماره 41، تابستان 1394، صفحه 93-111.

    [12] محمد رضا سلطانی صدرآبادی، بهمن وحیدی، روزبه ریاضی، "تحلیل جریان خون در حلقه‌ی ویلیس مغزی با استفاده از تصاویر سی تی اسکن و روش برهمکنش سیال-سازه"، نشریه مدل سازی در مهندسی، دوره ۱۷، شماره 7، 1398، صفحه ۲۸۵-۲۹۴.

    • S. Tabatabaei, A. Talebi, M. Tavakoli, "A novel adaptive order/parameter identification method for variable order systems application in viscoelastic soft tissue modeling", Chaos, Solitons & Fractals, Vol.102, 2017, pp. 447-455.
    • Kilbas, S. Marzan, “Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions”, Differential Equations, Vol.41, No.1, 2005, pp.84-89.
    • Ericson, and Jan-Åke Schweitz. "Mechanical properties of materials in microstructure technology." In Handbook of Micro/Nano Tribology, pp. 765-798. CRC Press, 2020.
    • S. Tabatabaei, et al, “An Adaptive Order/State Estimator for Linear Systems with Non-integer Time-Varying Order”, Automatica (A Journal of IFAC), Vol.84, 2017, pp.1-9.
    • W. Fang, Hai-Wei Sun, and Hong Wang. "A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations." Computers & Mathematics with Applications80, no. 5 (2020): 1443-1458.
    • S. Tabatabaei, et al, “Non-integer Variable Order Dynamic Modeling and Identification of Soft Tissue Deformation”, American Control Conference, Seattle, 2017.
    • Segev and Marcelo Epstein, eds. Geometric Continuum Mechanics. Vol. 42. Springer Nature, 2020.

    [20] سید سپهر طباطبائی، مهدی توکلی، حیدرعلی طالبی، "استفاده از شبکه عصبی و الگوریتم ژنتیک در تشخیص مرتبه ناصحیح بافت نرم"، کنفرانس ملی سیستم های هوشمند و محاسبات سریع، 1399،  صفحه 1-10.