Study the Effects of Magnetic Field and Porous Medium on Heat Transfer and Flow of a Nanofluid in a Wavy Channel

Document Type : Mechanics article

Authors

1 Department of Mechanical Engineering, Faculty of Engineering, Azad University, Central Tehran Branch, Tehran, Iran

2 Associate Professor, Department of Mechanical Engineering, School of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

3 Assistant Professor, Department of Mechanical Engineering, School of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

In this study, the heat transfer of nanofluids as single-phase, incompressible, laminar, permanent in a two-dimensional sinusoidal channel under the influence of a magnetic field with a porous medium is investigated. Alternating heat flux is applied to the channel walls. The governing equations are discretized using Fluent software with finite volume method (FVM) and velocity and pressure coupling is performed using SIMPLE algorithm. The Reynolds number range is 500 ≤ Re ≤ 200. Water is considered as the base fluid and magnesium oxide nanoparticles have been added to it. The volume percentage of nanofluid is 0.04. Nanofluid flow in 4 different Darcys (0.00001, 0.0001, 0.001, and 0.01) and magnetic field application in 4 Hartmann numbers (0, 4, 7 and 10) have been investigated. The results show that in all cases, with increasing Hartmann number, the heat transferred improves and the pressure drop increases. By increasing the Darcy number from 0.00001 to 0.01 under the same conditions (Reynolds 500 and Hartmann 10), the Nusselt number equals 4.392. Also, with increasing the Darcy number, the viscous resistance decreased and the pressure drop was always lower, so that the numerical pressure drop ratio was less than 1.

Keywords

Main Subjects


[1] L. Gong, K. Kota, W. Tao, and Y. Joshi, "Thermal Performance of Microchannel with Wavy Walls for Electronics Cooling", Components, Packaging and Manufacturing Technology, IEEE Transactions, Vol. 1, 2011, pp. 1029-1035.
]2[ علی صالحین و آرش میرعبداله لواسانی، "تاثیر هندسه و سیال داخل جداره بر عملکرد حرارتی- هیدرولیکی یک کانال موجی-شکل در جریان مغشوش"، نشریه مدل‌سازی در مهندسی، دوره 17، شماره 57، تابستان 1398، صفحه 273- 283.
[3] A. Sakanova, CC. Keian, and Z.Jiyun," Performance improvements of microchannel heat sink using wavy channel and nanofluids", International Journal of Heat and Mass Transfer, Vol. 89, 2015, pp. 59–74.
[4] E.W. Bitam, Y. Demagh, A. Hachicha, H. Benmoussa, and Y.AKabar," Numerical Investigation of a Novel Sinusoidal Tube Receiver for Parabolic Trough Technology", Applied Energy, Vol. 218, 2018, pp. 494–510.
[5] A. E. Kabeel, E. M. S. El-Said, and S. A. Dafea, "A Review of Magnetic Field Effects on Flow and Heat Transfer in Liquids: Present Status and Future Potential for Studies and Applications", Renew. Sustain. Energy Rev, Vol. 45, 2015, pp. 830–837.
[6] L. Benos, and I.E. Sarris," Analytical Study of the Magnetohydrodynamic Natural Convection of a Nanofluid Filled Horizontal Shallow Cavity with Internal Heat Generation", International Journal of Heat and Mass Transfer, Vol. 130, 2019, pp. 862–873.
[7] M. Sheikholeslami, and S. Shehzad, "Numerical Analysis of Fe3O4–H2O Nanofluid Flow in Permeable Media Under the Effect of External Magnetic Source", International Journal of Heat and Mass Transfer, Vol. 118, 2018, pp. 182-192.
[8] M. Ibrahim, T. Saeed, M. Bane, SN. Sedeh, YM. Chu, and D. Toghraie, "Two-phase Analysis of Heat Transfer and Entropy Generation of Water-based Magnetite Nanofluid Flow in a Circular Microtube with Twisted Porous Blocks under a Uniform Magnetic Field", Powder Technology, Vol. 384, 2021, pp. 522–541.
[9] M. Bezaatpour, and M. Goharkhah, "Effect of Magnetic Field on the Hydrodynamic and Heat Transfer of Magnetite Ferrofluid Flow in a Porous Fin Heat Sink", Journal of Magnetism and Magnetic Materials, Vol. 476, 2019, pp. 506–515.
]10 [محمد تقیلو، جلال قاسمی و محمد نوروزی،" استفاده از محیط متخلخل برای بهبود انتقال گرمای جابه‌جایی اجباری در کانال و تحلیل عددی آن به روش بولتزمن شبکه‌ای"، نشریه مدل‌سازی در مهندسی، دوره 17، شماره 58، پاییز 1398، صفحه 27- 39.
]11 [طاهر ارمغانی، محمدجواد مغربی و محسن نظری،" مقایسه انتقال حرارت جابه‌جایی اجباری تکفازی و دوفازی نانوسیالات در کانال متخلخل"، نشریه مدل‌سازی در مهندسی، دوره 13، شماره 40، بهار 1394، صفحه 103- 114.
[12] Y. Wang, C.Q.Z. Ding, J. Tu, and R. Zhao," Numerical Simulation of Flow and Heat Transfer Characteristics of Nanofluids in Built in Porous Twisted Tape Tube", Powder Technology, Vol. 392, 2021, pp. 570–586.
[13] M. Izadi, R. Mohebbi, A.A. Delouei, and H. Sajjadi, "Natural Convection of a Magnetizable Hybrid Nanofluid Inside a Porous Enclosure Subjected to Two Variable Magnetic Fields", International Journal of Mechanical Sciences, Vol. 151, 2019, pp. 154–169.
[14] OA. Beg, K. Venkatadri, and VA. Prasad, " Numerical study of magnetohydrodynamic natural convection in a nonDarcian porous enclosure filled with electrically conducting helium gas" Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 236, 2022, pp. 1989–1996..
[15] H. R. Ashorynejad, and A. Zarghami, "Magnetohydrodynamics Flow and Heat Transfer of Cu-Water NanoFluid Through a Partially Porous Wavy Channel", International Journal of Heat and Mass Transfer, Vol. 119, 2018, pp. 247–258.
[16] Y. Demagh, I. Bordja, Y. Kabar, and H. Benmoussa, "A design method of an S-curved parabolic trough collector absorber with a three-dimensional heat flux density distribution", Solar Energy, Vol. 122, 2015, pp. 873–884.
[17] S. Valiallah Mousavi, M. Barzegar Gerdroodbary, M. Sheikholeslami and D. D. Ganji, "The influence of a magnetic field on the heat transfer of a magnetic nanofluid in a sinusoidal channel", The European Physical Journal Plus, Vol. 131, 2016, pp. 1–12.
[18] S. Nazari, D. Toghraie," Numerical simulation of heat transfer and fluid flow of Water-CuO Nanofluid in a sinusoidal channel with a porous medium", Physica E, Vol. 87, 2017, pp. 134–140.
[19] C.C. Wang, C.K. Chen," Forced convection in a wavy-wall channel", International Journal of Heat and Mass Transfer, Vol. 45, 2002, pp. 2587–2595.
[20] R. Nouri, M. Gurji and D. D. Ganji, "Numerical investigation of magnetic field effect on nanofluid forced heat transfer in a sinusoidal channel", Modares Mechanical Engineering Journal, Vol. 14, 2014, pp. 43–55.
[21] Kays WM, London AL. Compact heat exchangers. 3rd ed. Melbourne: Kreiger Publishing; 1984.
[22] Webb RL, Kim NH. Principles of enhanced heat transfer. 2nd ed. New York, NY: Taylor & Francis Group; 2006.
[23] G. Kefayati, "Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution", Powder Technology, Vol. 243, 2013, pp. 171–183.
[24] H.C. Brinkman., "The viscosity of concentrated suspensions and solutions", Journal of Chemical Physics, Vol. 20, 1952, pp. 571–581.
[25] K. Khanafer, K. Vafai M. Lightstone "Buoyancydriven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids", International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 3639–3653.
[26] Maxwell J.C., A Treatise on Electricity and Magnetism, second ed. Oxford University Press, Cambridge, 1904, pp. 435-441.
[27] A. A. Permanasari, B. S. Kuncara, and P. Puspitasari, "Convective heat transfer characteristics of TiO2-EG nanofluid as coolant fluid in heat exchanger", AIP Conference Proceedings, 03 July, Avita Ayu, State University of Malang, Vol. 1220, 2019, pp. 451–468.
[28] A. A. Minea, and W. M. El-Maghlany, "Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison", Renew Energy, Vol. 120, 2018, pp. 350–364.
[29] S. S. Molokov, R. Moreau, and H. K. Moffatt, "Magnetohydrodynamics: Historical Evolution and Trends", Vol. 80. Springer Science & Business Media, 2007.
[30] R.A. Silva, and M.J de Lemos," Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface", International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 5113–5121.