Droplet Breakup with Unequal sized in Symmetric Y-junction Microchannel

Document Type : Mechanics article

Authors

Department of mechanical engineering, Sari Branch, Islamic Azad University, Sari, Iran

Abstract

Droplet based microfluidic systems have found versatile industrial and scientific applications, like biological engineering, lab-on-chip, drug delivery, and encapsulation. In the current study, the breakup of mother droplets in a symmetric Y-junction microchannel under an electric field is numerically investigated. To this approach, a 2D numerical model base on the level set method is performed by the COMSOL Multi-physics software. Two methods for applying the electric field are considered: a symmetric and an asymmetric electric field. In the symmetric electric field, it is observed that the mother droplet splits faster in the presence of an electric field when compared with the case without the electric field. Also, the mother droplet is divided into two daughter droplets with equal sizes. For the asymmetric electric field, the results reveal that the mother droplet splits into two daughter droplets with unequal sizes. Furthermore, a novel flow pattern called hybrid pattern is determined in the asymmetric splitting of droplets. In addition, there is a critical electric capillary number above which a non-splitting pattern.

Keywords

Main Subjects


[1] B. Khoo, G. Grenci, Y. Lim, S. Lee, J. Han, and C. Lim, "Expansion of Patient-derived Circulating Tumor Cells from Liquid Biopsies Using a CTC Microfluidic Culture Device", Nature protocols, Vol. 13, December 2018, pp. 34-58.
[2] محمد مهدی قدیری، سید علی حسینی، سید عباس سادات سکاک، علی رجب­پور، "بررسی پارامترهای موثر در به دام اندازی ذرات به کمک جریان‌های ثانویه در میکروکانال‌های با مقطع مستطیلی متغیر"، نشریه مدل‌سازی در مهندسی، دوره 19، شماره 65، تابستان 1400، پذیرفته شده.
[3] F. Ahmadi, K. Samlali, P. Vo, and S. Shih, "An Integrated Droplet-digital Microfluidic System for On-demand Droplet Creation Mixing Incubation and Sorting", Lab on a Chip, Vol. 19, No. 3, Jan 2019, pp. 524-535.
[4] M. Vajdi, F. Moghanlou, E. Niari, M. Shahedi Asl, and M. Shokouhimehr, "Heat Transfer and Pressure Drop in a ZrB2 Microchannel Heat Sink: a Numerical Approach", Ceramics International, Vol. 46, No. 2, February 2020, pp. 1730-1735.‏
[5] D. Link, S. Anna, D. Weitz, and H. Stone A, "Geometrically Mediated Breakup of Drops in Microfluidic Devices", Physical Review Letters, Vol. 92, No. 5, February 2004, pp. 054503.‏
[6] T.H. Ting, Y.F. Yap, N.T. Nguyen, T.N. Wong, J.CK. Chai, and L. Yobas, "Thermally Mediated Breakup of Drops in Microchannels", Applied Physics Letters, Vol. 89, No. 23, December 2006, pp. 234101.
[7] LM. Deremble, and P. Tabeling, "Droplet Breakup in Microfluidic Junctions of Arbitrary Angles", Physical Review E, Vol. 74, September 2006, pp. 035303.
[8] A.M. Leshansky, and L.M. Pismen, "Breakup of Drops in a Microfluidic T junction", Physics of Fluids, Vol. 21, No. 2, February 2009, 023303.
[9] M.C. Jullien, M.J. Tsang, C. Cohen, L. Menetrier, and P. Tabeling, "Droplet Breakup in Microfluidic T-junctions at Small Capillary Numbers", Physics of Fluids, Vol. 21, No. 7, July 2009, pp. 072001.‏
[10] A. Bedram and A., Moosavi "Droplet Breakup in an Asymmetric Microfluidic T junction", The European Physical Journal E, Vol. 34, No. 8, August 2011, pp. 1-8.
[11] S. Afkhami, A.M. Leshansky, and Y. Renardy, "Numerical Investigation of Elongated Drops in a Microfluidic T-junction", Physics of Fluids, Vol. 23, No. 2, February 2011, pp. 022002.‏
[12] Y. Wang, M. Do-Quang, and G. Amberg, "Viscoelastic Droplet Dynamics in a Y-shaped Capillary Channel", Physics of Fluids, Vol. 28, March 2016, pp. 033103.
[13] X. Wang, C. Zhu, Y. Wu, T., Fu, and Y. Ma "Dynamics of Bubble Breakup with Partly Obstruction in a Microfluidic T-junction", Chemical Engineering Science, Vol. 132, August 2015, pp. 128-138.
[14] مرضیه بابایی ربیعی و شهرام طالبی، "بررسی عددی تأثیرپذیری افت فشار از نحوه آرایش فیبرها در فیلترهای هوا با استفاده از روش شبکه بولتزمن "، نشریه مدل‌سازی در مهندسی، دوره 14، شماره 47، زمستان 1395، صفحه 267-278.
[15] محمد تقیلو، جلال قاسمی و محمد نوروزی، "استفاده از محیط متخلخل برای بهبود انتقال گرمای جابه‏ جایی اجباری در کانال و تحلیل عددی آن به روش بولتزمن شبکه­ی"، نشریه مدل‌سازی در مهندسی، دوره 17، شماره 58، پاییز 1398، صفحه 281- 39.
[16] K. Fallah, and M.T.Rahni, "Lattice Boltzmann Simulation of Drop Formation in T-junction Microchannel", Journal of Molecular Liquids, Vol. 240, May 2017, pp. 723-732.‏
[17] A. Ghaderi, M.H. Kayhani, M. Nazari, and K. Fallah, "Drop Formation of Ferrofluid at Co-flowing Microcahnnel under Uniform Magnetic Field", European Journal of Mechanics-B/Fluids. Vol. 67, February 2018, pp. 87-96.
[18] Aboutalebi M, Bijarchi MA, Shafii MB. and Hannani, SK., "Numerical Investigation on Splitting of Ferrofluid Microdroplets in T-junctions Using an Asymmetric Magnetic Field with Proposed Correlation", Journal of Magnetism and Magnetic Materials, Vol. 447, No. 1, February 2018, pp. 139-149.‏
[19] A. Bedram, A.E. Darabi, A. Moosavi, S.K. Hannani, "Numerical Investigation of an Efficient Method (T-Junction with Valve) for Producing Unequal-sized Droplets in Micro-and Nano-Fluidic Systems", Journal of Fluids Engineering, Vol. 137, No. 3, March 2015, pp. 031202.
[20] A. Kiani Moqadam, A. Bedram, and M.H. Hamedi, "A Novel Method (T-Junction with a Tilted Slat) for Controlling Breakup Volume Ratio of Droplets in Micro and Nanofluidic T-Junctions", Journal of Applied Fluid Mechanics, Vol. 11, No. 5, pp. 1255-1265.
[21] D. Ma, D. Liang, Ch. Zhu, T. Fu, Y. Ma, X. Yuan, and H. Li, "The Breakup Dynamics and Mechanism of Viscous Droplets in Y-shaped Microchannels", Chemical Engineering Science, Vol. 231, No. 15, February 2021, 116300.
[22] G. Tomar, D. Gerlach, G. Biswas, N. Alleborn, A. Sharma, F. Durst, S.W.J. Welch and A. Delgado,"Two-phase Electrohydrodynamic Simulations Using a Volume-of-fluid Approach", Journal of Computational Physics, Vol. 227, No. 2, December 2007, pp. 1267-1285.
[23] D. Saville "Electrohydrodynamics: the Taylor-Melcher Leaky Dielectric Model. Annual Review of Fluid Mechanics", Vol. 29, No. 1, 1997, pp. 27-64.
[24] J. Hua, L.K. Lim, and C.-H. Wang, "Numerical simulation of deformation/motion of a drop suspended in viscous liquids under influence of steady electric fields", Physics of Fluids, Vol. 20, No. 11, 2008, pp. 113302.
[25] I. Roghair, M. Musterd, D. van den Ende, C. Kleijn, M. Kreutzer and F. Mugele, "A numerical technique to simulate display pixels based on electrowetting", Microfluid Nanofluid, Vol. 19, April 2015, pp. 465–482.
[27] Wehking, J., "Electrohydrodynamic Manipulation of Liquid Droplet Emulsions in a Microfluidic Channel". 2013.
[27] F.P. Bretherton, "The Motion of Long Bubbles in Tubes", Journal of Fluid Mechanics", Vol. 10, No. 2, March 1961, pp. 166-188.‏
[28] D. Sherwood, "Breakup of Fluid Droplets in Electric and Magnetic Fields", Journal of fluid mechanics, Vol. 188, April 1988, pp. 133–146.
[29] Y. Lin, P. Skjetne, and A. Carlson, "A Phase Field Model for Multiphase Electro-hydrodynamic Flow", International journal of multiphase flow", Vol. 45, October 2012, pp. 1–11