Modeling and optimization of a fixed bed catalytic reactor for the cyclohexane dehydrogenation process

Document Type : Chemistry Article

Authors

1 Faculty of Chemical Engineering, Amirkabir University of Technology, Tehran

2 Senior Researcher, Center for Engineering Studies and Passive Defense, IRGC, in the field of oil, gas and petrochemicals

3 گروه مهندسی پلیمر، دانشکده مندسی شیمی ، پردیس دانشکده های فنی ، دانشگاه تهران

Abstract

In this paper, the modeling of the industrial cyclohexane dehydrogenation process is done. The proposed configuration consists of a packed bed reactor including Pt/Al2O3 catalyst particles where cyclohexane will be dehydrogenated to significant products such as benzene and hydrogen. Besides, the optimization makes it possible to produce larger amounts of hydrogen as an environmentally friendly fuel, along with benzene, without production of any pollution. The governing equations including mass balance, energy balance, and pressure drop which are of the ordinary type (ODE) are achieved based on the steady-state conditions in which the feed flows are axial throughout the homogenous catalyst beds with variable physical properties. As the result, the one-dimensional homogenous mathematical model and the 4th order Runge-Kutta method is applied to solve them. Finally, the temperature change curves, conversion rates, and molar components of the components along the reactor were plotted and interpreted. After that, the reactor performance was optimized by a genetic algorithm, which resulted in a 0.88% increase in product output.. Afterwards, to approve the correctness and validity of the model, the simulation results are compared with the experimental data and acceptable agreement is achieved.

Keywords

Main Subjects


[1] B. Wang and G. F. Froment, "Dehydrogenation of cyclohexane on Pt (111) in a bulb reactor," Ctalysis Letters, vol. 147, no. 3, pp. 663-673, 2017.
[2] M. K. Szukiewicz and K. Kaczmarski, "Modeling of a Real-Life Industrial Reactor for Hydrogenation of Benzene Process," Catalysts, vol. 11, no. 4, p. 412, 2021.
[3] M. Farsi and A. Jahanmiri, "Mathematical simulation and optimization of methanol dehydration and cyclohexane dehydrogenation in a thermally coupled dual-membrane reactor," international journal of hydrogen energy, vol. 36, no. 22, pp. 14416-14427, 2011.
[4] N. Kariya, A. Fukuoka, and M. Ichikawa, "Efficient evolution of hydrogen from liquid cycloalkanes over Pt-containing catalysts supported on active carbons under “wet–dry multiphase conditions”," Applied Catalysis A: General, vol. 233, no. 1-2, pp. 91-102, 2002.
[5] M. Khademi, P. Setoodeh, M. Rahimpour, and A. Jahanmiri, "Optimization of methanol synthesis and cyclohexane dehydrogenation in a thermally coupled reactor using differential evolution (DE) method," International Journal of Hydrogen Energy, vol. 34, no. 16, pp. 6930-6944, 2009.
[6] M. Khademi, M. Rahimpour, and A. Jahanmiri, "Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor," International Journal of Hydrogen Energy, vol. 35, no. 5, pp. 1936-1950, 2010.
[7] J. S. Rigden, Hydrogen: The Essential Element. Harvard University Press, 2003.
[8] N. Kariya, A. Fukuoka, T. Utagawa, M. Sakuramoto, Y. Goto, and M. Ichikawa, "Efficient hydrogen production using cyclohexane and decalin by pulse-spray mode reactor with Pt catalysts," Applied Catalysis A: General, vol. 247, no. 2, pp. 247-259, 2003.
[9] I. Dincer and A. S. Joshi, Solar based hydrogen production systems. Springer, 2013.
[10] K. Akamatsu et al., "Stable high-purity hydrogen production by dehydrogenation of cyclohexane using a membrane reactor with neither carrier gas nor sweep gas," Journal of Membrane Science, vol. 330, no. 1-2, pp. 1-4, 2009.
[11] D. Koutsonikolas, S. Kaldis, V. Zaspalis, and G. Sakellaropoulos, "Potential application of a microporous silica membrane reactor for cyclohexane dehydrogenation," International journal of hydrogen energy, vol. 37, no. 21, pp. 16302-16307, 2012.
[12] X. Wang, B. Wang, M. Wang, Q. Liu, and H. Wang, "Cyclohexane dehydrogenation in solar-driven hydrogen permeation membrane reactor for efficient solar energy conversion and storage," Journal of Thermal Science, pp. 1-11, 2021.
[13] S. Kumar, T. Gaba, and S. Kumar, "Simulation of catalytic dehydrogenation of cyclohexane in zeolite membrane reactor," International Journal of Chemical Reactor Engineering, vol. 7, no. 1, 2009.
[14] B.-H. Jeong, K.-I. Sotowa, and K. Kusakabe, "Modeling of an FAU-type zeolite membrane reactor for the catalytic dehydrogenation of cyclohexane," Chemical Engineering Journal, vol. 103, no. 1-3, pp. 69-75, 2004.
[15] اصغر محمدی و علی فرضی، " مدلسازی و شبیه سازی تبدیل کاتالیستی مستقیم جزئی متان به متانول در یک راکتور بستر سیال "، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 52، بهار 1397، صفحه 397- 407.
[16] علی حقیقی اصل ، امین احمدپور و نرگس فلاح، " مدلسازی کاهش COD پساب صنایع پتروشیمی توسط روش های طراحی آزمایش و شبکه عصبی مصنوعی "، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 54، پاییز 1397، صفحه 295- 307.
[17] مسعود خواجه نوری ، فرشته مشکانی و مهران رضایی، " بررسی مدل ترمودینامیکی برای کاتالیست نیکل ارتقا یافته با اکسید سریم روی پایه اکسید منیزیم نانو کریستالی در فرایند ریفرمینگ خشک متان "، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 53، تابستان1397، صفحه 389- 396.
[18] B.-H. Jeong, K.-I. Sotowa, and K. Kusakabe, "Catalytic dehydrogenation of cyclohexane in an FAU-type zeolite membrane reactor," Journal of Membrane Science, vol. 224, no. 1-2, pp. 151-158, 2003.