[1] N. Jing, Z. Wu, and H. Wang, "A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction", Expert Systems with Applications, Vol. 178, 2021, 115019
[2] K. Chakraborty, S. Bhatia, S. Bhattacharyya, J. Platos, R. Bag, and AE. Hassanien, "Sentiment Analysis of COVID-19 tweets by Deep Learning Classifiers—A study to show how popularity is affecting accuracy in social media",Applied Soft Computing, Vol.97, 2020, 106754.
]3[ حمیدرضا میرشاهولد، رامین قاسمی اصل، ناهید رئوفی و مهرداد ملک زاده دیرین، مدل سازی و پیش بینی نقطه اشتعال ترکیبات هیدرو کربنی با استفاده از شبکه عصبی"، نشریه مدل سازی در مهندسی، دوره 19، شماره 64، بهار 1400، صفحه 109-116.
[4] Z. Abbasi-Moud, H. Vahdat-Nejad, and J. Sadri, " Tourism recommendation system based on semantic clustering and sentiment analysis", Expert Systems with Applications, Vol. 167, 2021, 114324
]5[ هادی تقیزاده، تاج بخش نوید چاخرلو، عادل علیزاده و آیدین شیخ عبدالهزاده ممقانی، "مدلسازی عمر خستگی اتصالات دو لبه برشی با استفاده از شبکه عصبی مصنوعی"، نشریه مدل سازی در مهندسی، دوره 15، شماره 49، تابستان 1396، صفحه 55-63.
[6] H. Jafarian, AH. Taghavi, A. Javaheri, and R. Rawassizadeh ,"Exploiting BERT to improve aspect-based sentiment analysis performance on Persian language", In: 7th International Conference on Web Research (ICWR), IEEE, 2021, pp. 5-8.
[7] F. Huang, X. Zhang, Z. Zhao, J. Xu, and Z. Li, "Image–text sentiment analysis via deep multimodal attentive fusion", Knowledge-Based Systems, Vol. 167, 2019, pp. 26-37.
[8] W. Nie, Y. Yan, D. Song, and K. Wang," Multi-modal feature fusion based on multi-layers LSTM for video emotion recognition", Multimedia Tools and Applications , Vol. 80(11), 2021, pp. 16205-16214.
[9] V. Aiswaryadevi, S. Kiruthika, G. Priyanka, N. Nataraj, and M. Sruthi,"Effective Multimodal Opinion Mining Framework Using Ensemble Learning Technique for Disease Risk Prediction", In: Inventive Computation and Information Technologies. Springer,2021, pp. 925-933.
[10] A. Ghorbanali, MK. Sohrabi, and F. Yaghmaee, "Ensemble transfer learning-based multimodal sentiment analysis using weighted convolutional neural networks:, Information Processing & Management, 2022, Vol. 59(3), p. 102929.
[11] J. Deng, S. Frühholz, Z. Zhang, and B. Schuller, "Recognizing emotions from whispered speech based on acoustic feature transfer learning", IEEE Access, Vol. 5, 2017, pp. 235-246.
[12] A. Maas, RE. Daly, PT. Pham, D. Huang, AY. Ng, and C.Potts,"Learning word vectors for sentiment analysis", In: Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies, 2011, pp. 142-150.
[13] Y. Rao, J. Lei, L. Wenyin, Q. Li, and M. Chen , "Building emotional dictionary for sentiment analysis of online news", World Wide Web, Vol. 17 (4), 2014, pp. 723-742.
[14] A. Ishaq, S. Asghar, and SA. Gillani , " Aspect-based sentiment analysis using a hybridized approach based on CNN and GA", IEEE Access, Vol. 8,2020, pp. 499-512.
[15] Y. Ma, J. Yu, B. Ji, J. Chen, S. Zhao, and J. Chen, "Three-Way Decisions Based RNN Models for Sentiment Classification", In: International Joint Conference on Rough Sets. Springer, 2021, pp. 247-258.
[16] L. Zhao, L. Li, X. Zheng, and J. Zhang, "A BERT based sentiment analysis and key entity detection approach for online financial texts", In: 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), IEEE, 2021, pp. 233-238.
[17] Y. Yang, J. Jia, S. Zhang, B. Wu, Q. Chen, J. Li, C. Xing, and J. Tang, "How do your friends on social media disclose your emotions? ",In: 28th AAAI conference on artificial intelligence, 2014, pp. 306-312.
[18] A. Yadav, DK. Vishwakarma A deep learning architecture of RA-DLNet for visual sentiment analysis. Multimedia Systems, Vol. 26, 2020, pp. 431-451.
[19] Q. You, J. Luo, H. Jin, and J. Yang, "Joint visual-textual sentiment analysis with deep neural networks", In: Proceedings of the 23rd ACM international conference on Multimedia, 2015, pp. 1071-1074.
[20] C. Baecchi, T. Uricchio, M. Bertini, and A. Del Bimbo, " A multimodal feature learning approach for sentiment analysis of social network multimedia", Multimedia Tools and Applications , Vol. 75 (5) ,2016, pp. 507-525.
[21] X. Zhu, B. Cao, S. Xu, B. Liu, and J. Cao, "Joint visual-textual sentiment analysis based on cross-modality attention mechanism", In: International conference on multimedia modeling, Springer, 2019, pp. 264-276.
[22] D. Borth, R. Ji, T. Chen, T. Breuel, and S-F. Chang , "Large-scale visual sentiment ontology and detectors using adjective noun pairs", In: Proceedings of the 21st ACM international conference on Multimedia, 2013, pp. 223-232.
[23] Z. Zhao, H. Zhu, Z. Xue, Z. Liu, J. Tian, MCH. Chua, and M. Liu, "An image-text consistency driven multimodal sentiment analysis approach for social media", Information Processing & Management, Vol. 56 (6), 2019, p. 102097.
[24] Q. Fang, C. Xu, J. Sang, MS. Hossain, and G. Muhammad, " Word-of-mouth understanding: Entity-centric multimodal aspect-opinion mining in social media", IEEE Transactions on Multimedia 17, Vol. 12, 2015, pp. 281-296.
]25[ علیرضا قربانعلی، محمد کریم سهرابی و فرزین یغمایی، "طبقهبندی و تجزیه و تحلیل احساسات چندوجهی با استفاده از شبکههای کانولوشن وزندار ترکیبی" ، نشریه فناوری اطلاعات در طراحی مهندسی، دوره 14، شماره 1، شهریور1400، صفحه 1-10.
[26] N. Xu, W. Mao, "A residual merged neutral network for multimodal sentiment analysis", In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), IEEE, 2017, pp. 6-10.
[27] N. Xu, "Analyzing multimodal public sentiment based on hierarchical semantic attentional network", In: 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), IEEE, 2017, pp. 152-154.
[28] N. Xu, W. Mao, and G. Chen, "A co-memory network for multimodal sentiment analysis ", In: The 41st international ACM SIGIR conference on research & development in information retrieval, 2018, pp. 929-932.
[29] T. Jiang, J. Wang, Z. Liu, and Y. Ling, "Fusion-extraction network for multimodal sentiment analysis", Advances in Knowledge Discovery and Data Mining , Vol. 12085,2020,785.
[30] X. Yang, S. Feng, D. Wang, and Y. Zhang, "Image-text Multimodal Emotion Classification via Multi-view Attentional Network", IEEE Transactions on Multimedia, Vol. 23, 2020, pp. 41014-4026
[31] D. Gkoumas, Q. Li, C. Lioma, Y. Yu, and D. Song, "What makes the difference? An empirical comparison of fusion strategies for multimodal language analysis", Information Fusion, Vol. 66, 2021, pp. 184-197.
[32] Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, and AM. López, "Multimodal end-to-end autonomous driving", IEEE Transactions on Intelligent Transportation Systems, Vol. 23, 2022, pp. 537-547.
[33] X. Zhang, J. Liu, J. Shen, S. Li, K. Hou, B. Hu, J. Gao, and T. Zhang, "Emotion recognition from multimodal physiological signals using a regularized deep fusion of kernel machine", IEEE transactions on cybernetics, Vol. 51(9), 2021, 4386-4399.
[34] J. Huang, J. Tao, B. Liu, Z. Lian, and M. Niu, "Multimodal transformer fusion for continuous emotion recognition", In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2020, pp. 507-511.
]35[ فاضل فصیحی، محمودرضا کیمنش، سیدعلی صحاف و سهیل قره، "تعیین ضریب بار همارز مبتنی بر الگوریتم شبکه عصبی مصنوعی ، نشریه مدل سازی در مهندسی، دوره 19، شماره 65، تابستان 1400، صفحه 149-160.
[36] Y. Zhang, B. Wallace, "A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification", arXiv preprint arXiv:1510.03820, 2015.
[37] Y. Cheng, L. Yao, G. Xiang, G. Zhang, T. Tang, and L. Zhong , " Text sentiment orientation analysis based on multi-channel CNN and bidirectional GRU with attention mechanism", IEEE Access , Vol. 8, 2020, pp. 964-975.
[38] AH. Ombabi, W. Ouarda, and AM. Alimi , "Deep learning CNN–LSTM framework for Arabic sentiment analysis using textual information shared in social networks", Social Network Analysis and Mining , Vol 10 (1) ,2020, pp.1-13.
[39] JP. Gujjar, HP. Kumar, and NN. Chiplunkar, Image classification and prediction using transfer learning in colab notebook. Global Transitions Proceedings, 2021. Vol. 2(2), p. 382-385.
[40] T. Tang, X. Tang, and T. Yuan ,"Fine-Tuning BERT for Multi-Label Sentiment Analysis in Unbalanced Code-Switching Text",IEEE Access , Vol.8,2020, pp. 248-256.
[41] TN. Rincy, R. Gupta,"Ensemble Learning Techniques and its Efficiency in Machine Learning: A Survey", In: 2nd International Conference on Data, Engineering and Applications (IDEA), IEEE, 2020, pp. 1-6.
[42] X. Frazao, LA. Alexandre, "Weighted convolutional neural network ensemble", in Iberoamerican Congress on Pattern Recognition. 2014. In: E. Bayro-Corrochano, E. Hancock, (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2014. Lecture Notes in Computer Science, vol 8827.
[43] Á. Casado-García, J. Heras," Ensemble methods for object detection", In: ECAI 2020. IOS Press, (2020) pp. 688-695.
[44] Y. Kawana, N. Ukita, J-B. Huang,and M-H. Yang,"Ensemble convolutional neural networks for pose estimation", Computer Vision and Image Understanding , Vol 169 ,2018, pp. 62-74.
[45] S. Poria, H. Peng, A. Hussain, N. Howard, and E. Cambria, "Ensemble application of convolutional neural networks and multiple kernel learning for multimodal sentiment analysis", Neurocomputing, Vol. 261, 2017, pp. 217-230.
[46] L. Nanni, YM. Costa, RL. Aguiar, RB. Mangolin, S. Brahnam, and CN Silla ," Ensemble of convolutional neural networks to improve animal audio classification", EURASIP Journal on Audio, Speech, and Music Processing, 2020, https://doi.org/10.1186/s13636-020-00175-3.
[47] AK. Das, S. Ghosh, S. Thunder, R. Dutta, S. Agarwal, and A. Chakrabarti, "Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network", Pattern Analysis and Applications, Vol. 24, 2021, pp. 1111-1124.
[48] D. Alexandru, S. Stelian, NI. Alina, and F.Aschim, "Ensembles of Convolutional Neural Networks Trained Using Unconventional Data for Stock Predictions", In: Business Revolution in a Digital Era, Springer, 2021, pp. 241-250.
[49] Y. Wang, M. Huang, X. Zhu, and L. Zhao, "Attention-based LSTM for aspect-level sentiment classification", In: Proceedings of the 2016 conference on empirical methods in natural language processing, 2016, pp. 606-615.
[50] J. Briskilal, C. Subalalitha, "An ensemble model for classifying idioms and literal texts using BERT and RoBERTa", Information Processing & Management, Vol. 59(1), 2022, 102756.
[51] J. Devlin, M-W. Chang, K. Lee, and K. Toutanova, "Bert: Pre-training of deep bidirectional transformers for language understanding", 2018, arXiv preprint arXiv:181004805.
[52] K. Simonyan, A. Zisserman, "Very deep convolutional networks for large-scale image recognition", arXiv preprint ,2014,arXiv:14091556.
[53] S. Qian, C. Ning,and Y. Hu ,"MobileNetV3 for Image Classification", In: 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), IEEE, 2021, pp. 490-497.
[54] M. Abd Elaziz, A. Dahou, NA. Alsaleh, AH. Elsheikh, AI. Saba, and M. Ahmadein, " Boosting COVID-19 Image Classification Using MobileNetV3 and Aquila Optimizer Algorithm" Entropy, Vol. 23(11), 2021, 1383.
[55] Q .You, L. Cao, H. Jin, and J. Luo ,"Robust visual-textual sentiment analysis: When attention meets tree-structured recursive neural networks", In: proceedings of the 24th ACM international conference on multimedia, 2016, pp. 1008-1017.
[56] Q. You, H. Jin,and J. Luo ,"Visual sentiment analysis by attending on local image regions", In: Thirty-First AAAI Conference on Artificial Intelligence, 2017, pp. 231-237.
[57] H. Chen, M. Sun, C. Tu, Y. Lin, and Z. Liu ,"Neural sentiment classification with user and product attention", In: Proceedings of the 2016 conference on empirical methods in natural language processing, 2016, pp. 1650-1659.
[58] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, AN. Gomez, Ł. Kaiser,and I. Polosukhin," Attention is all you need. In: Advances in neural information processing systems", 2017, pp. 5998-6008.
[59] Y. Zhu, W. Zheng, and H. Tang, "Interactive dual attention network for text sentiment classification", Computational Intelligence and Neuroscience 2020, p. 8858717.
[60] Q. Le, T. Mikolov ,"Distributed Representations of Sentences and Documents", In: Proceedings of the 31st International Conference on Machine Learning Research, PMLR, Vol. 32(2), 2014, pp. 1188-1196.