عیب‌یابی بلبرینگ‌ها با استفاده از تبدیل موجک و ماشین بردار پشتیبان مورلت و مقایسه آنها با تجزیه مود تجربی

نوع مقاله : مقاله مکانیک

نویسنده

گروه مهندسی مکانیک، واحد الیگودرز، دانشگاه آزاد اسلامی، الیگودرز، ایران

چکیده

در این مقاله، مقایسه‌ای بین روش های تجزیه حالت تجربی، تجزیه حالت تجربی دسته‌ای و تبدیل موجک پیوسته مورلت در تشخیص عیوب مختلف بیرینگ‌ها انجام شده است. در همین راستا از ماشین بردار پشتیبان با هسته موجک مورلت و استراتژی یکی در مقابل یکی که پارامترهای آن به کمک الگوریتم ژنتیک بهینه شده‌اند جهت طبقه‌بندی عیوب بلبرینگ‌ها استفاده می‌شود. یک معیار انتخاب مقیاس بر اساس نسبت ماکزیمم انرژی نسبی به آنتروپی رنی جهت تعیین مقیاس بهینه در آنالیز موجک استفاده می‌شود. همچنین، مقایسه‌ای بین عملکرد ماشین بردار پشتیبان موجک بهینه و غیربهینه نیز انجام شده است. سیگنال‌های ارتعاشی توسط یک بستر تست شبیه ساز عیوب بیرینگ در وضعیت های مختلف از جمله حالت سالم، عیب در ساچمه، عیب در حلقه خارجی، عیب در حلقه داخلی و عیب ترکیبی بلبرینگ، توسط سنسورهای شتاب‌سنج جمع‌آوری می‌گردد. بعد از پردازش و تجزیه سیگنال‌ها به مولفه‌های فرکانسی آنها، چند ویژگی آماری از هر مولفه فرکانسی استخراج و بعنوان ورودی ماشین بردار پشتیبان، جهت تفکیک کلاس‌ها از یکدیگر مورد استفاده قرار می گیرد. همچنین به منظور کاهش زمان و بهبود فرآیند تصمیم گیری در عیب‌یابی، با استفاده از روش یوتنس دسته ویژگی بهینه پارامترهای آماری ورودی ماشین بردار پشتیبان موجکی انتخاب می‌گردد. جهت ارزیابی طبقه‌بندی مجموعه داده‌ها از روش ارزیابی تقاطعی استفاده می‌شود. نتایج نشان داد که تبدیل موجک پیوسته مورلت نسبت به دو روش دیگر در پردازش سیگنال‌ها می‌‌تواند عیوب بلبرینگ‌ها را با دقت بالاتری شناسایی کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fault Diagnosis of Ball Bearings by Wavelet Transform and Morlet Support Vector Machine and Comparison them with Empirical Mode Decomposition

نویسنده [English]

  • mohammad heidari
Department of Mechanical Engineering, Aligudarz Branch, Islamic Azad University, Aligudarz, Iran
چکیده [English]

In this study, a comparison among the empirical mode decomposition, ensemble empirical mode decomposition and Morlet continuous wavelet transform in fault diagnosis of bearings are performed. A Morlet wavelet support vector machine with one against one strategy that was optimized by a genetic algorithm was used for fault classification. A scale selection criterion based on the maximum relative energy to Renyi entropy ratio is proposed to determine the optimal decomposition scale for wavelet analysis. A comparison between the performances of optimized and non-optimized of support vector machines were also carried out. Vibration signals were collected by a test rig for different fault of a bearing such as normal case, bearing with inner and outer race fault, and bearing with ball fault and combine fault. After the processing of vibration signals their frequency components, several statistical features were extracted from each frequency component as input of wavelet support vector machine for the fault classification of ball bearings. For reducing of time and process of fault diagnosis, optimum feature sets of statistical parameters are selected by Utans method. K-fold cross validation method is used for evaluation of classifier. The results show that continuous wavelet transform with Morlet base has higher accuracy with respect to other methods in fault classification of bearings.

کلیدواژه‌ها [English]

  • Wavelet transform
  • Empirical Mode Decomposition
  • Wavelet Support Vector Machine
  • Genetic Algorithm
[1] J. Wanga, RX. Gao, R. Yan, "A hybrid approach to bearing defect diagnosis in rotary machines", CIRP J. Manuf. Sci. Vol. l5, 2012, pp.357–365.
[2] HDM. De Azevedo,AM.  Araújo, N. Bouchonneau, "A review of wind turbine bearing condition monitoring, State of the art and challenges", Renew. Sustainable Energy Rev., Vol.56, 2016, pp.368–379.
[3]  J. Tlusty, I. Hernandez , S. Smith ,C. Zamudio , "High speed high power spindles with roller bearings", CIRP Ann. Manuf. Technol. Vol.36(1), 1987, pp.267-272.
[4] AM. Al-Ghamd , D. Mba, "A comparative experimental study on the use of acoustic emission and vibration analysis for bearing defect identification and estimation of defect size", Mech. Syst. Signal Process, Vol. 20(7), 2006, pp.1537–1571.
[5] Y. Lei, "Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery", Oxford, United Kingdom: Butterworth-Heinemann, 2017.
[6] M. Heidari, S. Shateyi, "Wavelet support vector machine and multi‑layer perceptron neural network with continues wavelet transform for fault diagnosis of gearboxes", J. Vibroeng. Vol. 19(1), 2017,  pp.125‑137.
[7] J.Huang, X. Hu, X. Geng, "An intelligent fault diagnosis method of high voltage circuit breaker based on improved EMD energy entropy and multi-class support vector machine", Electr. Pow. Syst. Res. Vol. 81, 2011, pp.400–407.
[8] Y.Gan, L. Sui,  J. Wu,  B. Wang, Q.  Zhang, G. Xiao, "An EMD threshold de-noising method for inertial sensors", Meas. Vol. 49, 2014, pp. 34–41.
[9] J. Singh, AK. Darp, SP. Singh, "Bearing damage assessment using Jensen-Rényi Divergence based on EEMD", Mech. Syst. Signal Process, Vol. 87, 2017, pp.307–339.
[10] Y. Lv,  R. Yuan,  G. Song, "Multivariate empirical mode decomposition and its application to fault diagnosis of rolling bearing" Mech. Syst. Signal Process, Vol.81,2016, pp.219–234.
[12] Y. Lei, Z. He, Y. Zi, "Application of the EEMD method to rotor fault diagnosis of rotating machinery" Mech. Syst. Signal Process, Vol. 23(4), 2009, pp.1327-1338.
[13] X. Gong , L. Ding, W. Du , H. Wang, "Gear Fault Diagnosis Using Dual Channel Data Fusion and EEMD Method", Procedia Eng., Vol.74, 2017, pp.918–926.
[14] C. Mishra, AK. Samantaray , G. Chakraborty , "Rolling element bearing fault diagnosis under slow speed operation using wavelet de-noising" Meas. ,Vol.113, 2017, pp.77–86.
]15[ پانیذ تیموری، مهدی مزینانی و راحیل حسینی، «ارائه یک مدل هوشمند قطعه بندی جهت شناسایی همپوشانی سلولی در تصاویر دیجیتال مبتنی بر منطق فازی و تبدیل موجک گسسته جهت شناسایی سرطان معده»، نشریه مدل سازی در مهندسی، شماره 63، دوره 18 ، زمستان1399 ، صفحه 131-150.
]16[ سید امیر فرهاد قاضی میرسعید، محسن معدنی و مهدی زارع، «بهبود سیستم پایش سلامت سازه در شناسایی محل ترک‌های ریز تیر با استفاده از تبدیل موجک و فیلتر دیجیتال»،  نشریه  مدل سازی در مهندسی، شماره 58،  دوره 17،پاییز 1398، صفحه 305-316.
]17[ مصطفی سبزه کار، ریحانه خزاعی، وحیده بابائیان و یونس اکبری، «تشخیص نویسنده از دست‌خط‌های برون‌خط مستقل از زبان نوشتاری مبتنی بر بافت با بهره‌گیری از تبدیل موجک در محیط دو زبانه فارسی – انگلیسی»، نشریه  مدل سازی در مهندسی ، شماره 63 ، دوره 18، زمستان 1399، صفحه 1-13.
[18] WJ. Wang , PD. McFadden, "Application of the wavelet transform to gearbox vibration analysis", ASME, Petroleum Division (Publication) PD, Vol.52,1993, pp.13–20.
[19] WJ. Wang, PD. McFadden, "Application of wavelets to gearbox vibration signals for fault detection", J. Sound Vib. Vol. 192(5),1996, pp.927–939.
[20] WJ. Wang ,PD. McFadden , "Application of orthogonal wavelets to early gear damage detection", Mech. Syst. Signal Process Vol. 9(5), 1995, pp.497–507.
[21] Z.Wu, H. Jiang, K. Zhao, X. Li,"An adaptive deep transfer learning method for bearing fault diagnosis", Meas., Vol.151, 2020, 107227.
[22] DT. Hoang, HJ. Kang, "A survey on Deep Learning based bearing fault diagnosis", Neurocomputing, Vol. 335, 2019, pp.327-335.
[23] J. Zhangyisun, L. Guo, H. Gao, X. Hong, H. Song, "A new bearing fault diagnosis method based on modified convolutional neural networks",  Chinese. J. Aeronaut., Vol.33(2), 2020, pp.439-447.
[24] P. Wang, Y. Yang, H. Ma, H. Xu, X. Li, Z. Luo, B.Wen,"Vibration characteristics of rotor-bearing system with angular misalignment and cage fracture: Simulation and experiment", Mech. Syst. Signal Process , Vol.182, 2023, 109545.
[25] S.NezamivandChegini, A.Bagheri, F.Najafi," Application of a new EWT-based denoising technique in bearing fault diagnosis", Meas. Vol.144, 2019, pp.275-297.
[26] X. Chen, B. Zhang, D. Gao, "Bearing fault diagnosis base on multi-scale CNN and LSTM model", J. Intell. Manuf.,Vol. 32, 2021,  pp. 971–987.
[27] E. Lopatinskaia,J. Zhu , J. Mathew, "Monitoring varying speed machinery vibration-II. Recursive filters and angle domain", Mech. Syst. Signal Process, Vol. 9(6),1995, pp. 647-655.
[28] Z. Zhang , J. Zhou, "Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines", Mech. Syst. Signal Process, Vol. 41(1–2), 2013, pp.127-140.
[29] M. Heidari , H. Homaei, H. Golestanian ,A. Heidari, "Fault diagnosis of gearboxes using wavelet support vector machine, least square support vector machine and wavelet packet transform", J. Vibroeng. Vol. 18(2), 2016, pp.860-875.
[30] J. Mercer, "Functions of positive and negative type and their connection with the theory of integral equations", Phil. Trans. R. Soc. A. , Vol. 209,1909, pp.415-446.
[31] L. Zhang,  W. Zhou, L. Jiao, "Wavelet support vector machine", IEEE Trans. Syst. Man Cybern B, Vol. 34(1), 2004, pp.34-39.
[32] Q. Hu, Z. He, Z. Zhang, Y. Zi, "Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble", Mech. Syst. Signal Process, Vol. 21(2), 2007, pp.688–705.
[33]  P. Zhou, S. Lu ,  F. Liua,  Y. Liu, G. Lia,  J. Zha, "Novel synthetic index-based adaptive stochastic resonance method and its application in bearing fault diagnosis", J. Sound Vib., Vol. 391,2017, pp.194–210.
[34] A. Hajnayeb, A. Ghasemloonia, SE. Khadem , MH. Moradi, "Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis", Expert. Syst. Appl. Vol. 38(8), 2011, pp.10205-10209.
[35]  PK. Kankar, SC. Sharma, SP. Harsha, "Fault diagnosis of ball bearings using continuous wavelet transform", Appl. Soft Comput., Vol. 11, 2011, pp.2300-2312.
[36] A. Rényi, On measures of entropy and information. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, Calif 1, 1961.