Experimental study of nanoparticles effect on the energy absorption of cylindrical nanocomposites in quasi-static axial loading

Document Type : Mechanics article

Authors

1 department of mechanical engineering, Semnan Uni

2 Faculty of Mechanical Engineering, Velayat University, Iranshahr, Iran.

3 Faculty of Mechanical Engineering, Semnan University, Semnan, Iran.

Abstract

Today, with advances, researchers are looking for a way to prevent human and financial damage from collisions. In this research, the energy absorption of nanocomposite structures with different percentages of clay and nan osilica nanoparticles along with diethylene triamine has been investigated using epoxy resin polymer and nanoparticles. And the samples under compressive axial loading have absorbed different amounts of energy. Therefore, the purpose of this study is to investigate the different effects of nanomaterials and different percentages. The design of this experiment has been done by Design-Expert software with a parametric study and Box Behnken Design (BBD). The range of changes in nanomaterials was 0-0.4 % and also diethylene triamine with weight percentages of 1, 3, and 5 % was used. The results show that the materials used in the study had a positive effect on energy absorption and the failure of the structure and the sample with weight percentages of 0.4% nano clay, 0.4% nano-silica, and 3% diethylenetriamine is the most optimal energy absorption mode. Has had a special.

Keywords

Main Subjects


[1] W. Kong et al., “Materials & Design Polyaniline-decorated carbon fibers for enhanced mechanical and electromagnetic interference shielding performances of epoxy composites,” Mater. Des., vol. 217, 2022, pp. 110–658.
[2] F. Silva, J. Njuguna, S. Sachse, K. Pielichowski, A. Leszczynska, and M. Giacomelli, “The influence of multiscale fillers reinforcement into impact resistance and energy absorption properties of polyamide 6 and polypropylene nanocomposite structures,” Mater. Des., vol. 50,2013, pp. 244–252.
[3] A. Rafiq, N. Merah, R. Boukhili, and M. Al-Qadhi, “Impact resistance of hybrid glass fiber reinforced epoxy/nanoclay composite,” Polym. Test., vol. 57, 2017, pp. 1–11.
[4] N. Domun, H. Hadavinia, T. Zhang, T. Sainsbury, G. H. Liaghat, and S. Vahid, “Nanoscale of epoxy using nanomaterials – a review of the,” Nanoscale, vol. 7, 2015, pp. 10294–10329.
[5] L. Wang, “Preparation , morphology and thermal / mechanical properties of epoxy / nanoclay composite,” vol. 37, 2006, pp. 1890–1896.
[6] M. Zappalorto, M. Salviato, and M. Quaresimin, “Mixed mode ( I + II ) fracture toughness of polymer nanoclay nanocomposites,” Eng. Fract. Mech., vol. 111, 2013, pp. 50–64.
[7] S. Laurenzi, S. Botti, A. Rufoloni, and M. G. Santonicola, “Fracture mechanisms in epoxy composites reinforced with carbon nanotubes,” Procedia Eng., vol. 88, 2014, pp. 157–164.
[8] E. Mahdi, “Quasi-static crushing behaviour of hybrid and non-hybrid natural fibre composite solid cones,” vol. 66, 2004, pp. 647–663.
[9] M. Kathiresan, K. Manisekar, and V. Manikandan, “Performance analysis of fibre metal laminated thin conical frusta under axial compression,” Compos. Struct., vol. 94, no. 12, 2012, pp. 3510–3519.
]10[ محمد جواد رضوانی, احسان برهانی, احسان الله شاهی،"ساخت فوم نانو کامپوزیت پلی‌یورتان سخت با استفاده از نانو ذرات SiC و بررسی خواص مکانیکی و جذب انرژی آن تحت بار دینامیکی" مدل سازی در مهندسی, دوره 16، شماره 53، 1397، صفحه 1تا 7.
]11[ فرزانه میراخورلو, ابراهیم نجفی کانی، "بررسی و پیش‎بینی خواص فیزیکی و مکانیکی کامپوزیت کاه و گچ به کمک مدل شبکه استنتاج عصبی فازی تطبیقی"، مدل سازی در مهندسی, دوره 17، شماره 58، 1398، صفحه 267-278.
]12[ سید امیر موسوی زاده, مجتبی حسینی, حسن حاتمی، "بررسی تجربی جذب انرژی ورق های فولادی انحنادار تحت بارگذاری ضربه‌ای و تاثیر لچکی روی تغییرشکل نمونه‌ها" مدل سازی در مهندسی, دوره 18، شماره 63، 1399، صفحه 27-40.
]13[ نگین نگهبان واشقانی, محمد جواد رضوانی, محمد دامغانی نوری، "بررسی تجربی و شبیه‌سازی عددی جذب انرژی در لوله استوانه ای پر شده از فوم پلی اورتان با استفاده از آغازگر"، مدل سازی در مهندسی, دوره 14، شماره 44، 1395، صفحه 69-78.
[14] Zhang H., Zhang Z., Friedrich K., “Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content,” Acta Mater, 2006, pp. 7–54.
[15] S. J. and Y. R. J, “Propagation in a glass particle-filled epoxy resin” Part 2: Effect of particle–matrix adhesion,” J Mater Sci, pp. 19, 2, 1984, pp 47–73.
[16] C. R. M, “Deformation and fracture of solids,” Englewood Cliffs, New Jersey Prentice-Hall, 1980.
[17] Y. Nakamura and M. Yamaguchi, “Effect of particle size on the fracture toughness of epoxy resin filled with spherical silica,” vol. 33, no. 16, 1992.
[18] R. L. R. F, “from the SAGE Social Science Collections . All Rights,” Mater. Lett, 1987, pp. 40– 103.
[19] P. Ma, N. A. Siddiqui, G. Marom, and J. Kim, “Composites : Part A Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites : A review,” Compos. Part A, vol. 41, no. 10, 2010, pp. 1345–1367.