Quality control modeling of manufactured products based on image processing and fuzzy transformation techniques

Document Type : Industry Article

Authors

1 Department of science and technology studies , AjA command and staff university, Tehran, Iran

2 Department of science and technology studies, AJA command and staff university, Tehran, Iran

Abstract

Nowadays, with the expansion of various methods of obtaining information from different systems and digital cameras, the use of image processing has been widely used. Due to the increase in the huge amount of data in the industry and the need to control and monitor this amount of data, the use of image processing methods has been widely used in various industries. The analysis of these data at different levels, including the control of production line processes, is one of the most up-to-date methods in the quality control system of the statistical process of products. Therefore, using new approaches for data monitoring and quality control of manufactured products can be considered as a fruitful method. The aim of the current research is to provide a model to control the quality of manufactured products based on the image processing technique approach and using fuzzy transformations for image compression and image data processing. In order to validate the results of this research, MATLAB software was used and the developed model was compared with previous studies. The simulation results show that the proposed GLR control chart is effective in reducing the error and increasing the detection accuracy. So that in the first image after applying the changes in brightness, the warning showed that this represents the proper performance of the proposed control chart against the changes.

Keywords

Main Subjects


[1] F. M. Megahed, W. H. Woodall, and J. A. Camelio, "A review and perspective on control charting with image data.", Journal of quality technology, Vol.43, NO.2, November2011, pp. 83-98.
]2[ عباس نصر آبادی، ساسان آزادی و جواد حدادنیا،" آشکارسازی چهره انسان در تصاویر رنگی بر مبنای فیلتر گوسی"، نشریه مدل سازی در مهندسی ، دوره 3، شماره 17، تابستان 1388، صفحه 9-16.
]3[ رامین نعمتی و جواد رهبر شهروزی، "مکانیابی با روش مونت کارلو و تلفیق آن با الگوریتم‌های جستجوی خام و ژنتیک با رویکرد پردازش تصویر (مطالعه موردی: جایگاه سوخت در شهر تبریز)"، نشریه مدل سازی در مهندسی, دوره 17، شماره 57، تابستان 1398، صفحه 27-39.
[4] Z. Liu, E. Blasch, and V. John, "Statistical comparison of image fusion algorithms: Recommendations.", Information Fusion, Vol.36, July2017, pp. 251-260.
[5] C. Duchesne, J. J. Liu, and J. F. MacGregor, "Multivariate image analysis in the process industries: A review.", Chemometrics and Intelligent Laboratory Systems, Vol.117, August2012, pp. 116-128.
[6] S. Arunpandian and S.S. Dhenakaran, "An effective image compression technique based on burrows wheeler transform with set partitioning in hierarchical trees.", Concurrency and Computation: Practice and Experience, Vol.34, NO.5, February2022, pp. e6705.
[7] V.Geetha, V. Anbumani, R. Parameshwaran and S. Gomathi, "Savitzky Golay and KPCA based Optimal Discrete Wavelet Transform Architecture for Image Compression.", Microprocessors and Microsystems, Vol.91, June2022, pp.104511.
[8] G. Garg and R. Kumar, "Analysis of image types, compression techniques and performance assessment metrics: A review.", Journal of Information and Optimization Sciences, Vol.43, NO.3, May2022, pp. 429-436.
]9[ هادی سلطانی زاده و نگارین جوادی، "شناسایی آسیب‌های پوستی با استفاده از الگوریتم فازی"، نشریه مدل‌سازی در مهندسی، دوره 17، شماره 59، زمستان 1398، صفحه 277-285.
[10] I. Perfilieva, M. Holčapek and V. Kreinovich, "A new reconstruction from the F-transform components.", Fuzzy Sets and Systems, Vol.288, April2016, pp.3-25.
[11] A. Khastan, I. Perfilieva and Z. Alijani, "A new fuzzy approximation method to Cauchy problems by fuzzy transform.", Fuzzy Sets and Systems, Vol.288, April2016, pp.75-95.
[12] I. Perfilieva, V. Novák and A. Dvořák, "Fuzzy transform in the analysis of data.", International Journal of Approximate Reasoning, Vol.48, NO.1, April2008, pp.36-46.
[13] S. Sessa, F. Di Martino and I.G. Perfilieva, "Fuzzy functions, relations, and fuzzy transforms 2013.", Advances in Fuzzy Systems, Vol.2013, November2013, pp.6-6.
[14] F. Di Martino, V. Loia, and S. Sessa, "Fuzzy transforms method in prediction data analysis.", Fuzzy Sets and Systems, Vol.180, NO.1, October2011, pp.146-163.
[15] M. Hanmandlu and D. Jha, "An optimal fuzzy system for color image enhancement.", IEEE Transactions on image processing, Vol.15, NO.10, October2006, pp.2956-2966.
[16] S. Nirmalraj, and G. Nagarajan. "Biomedical image compression using fuzzy transform and deterministic binary compressive sensing matrix.",  Journal of Ambient Intelligence and Humanized Computing, Vol.12, June2021, pp. 5733-5741.
[17] J. Močkoř and P. Hurtík, "Approximations of fuzzy soft sets by fuzzy soft relations with image processing application.", Soft Computing, Vol. 25, NO.10, May2021, pp. 6915-6925.
[18] K. Bhalla, D. Koundal, B. Sharma, Y.C. Hu and A. Zaguia, "A fuzzy convolutional neural network for enhancing multi-focus image fusion.", Journal of Visual Communication and Image Representation, Vol.84, April2022, pp. 103485.
[19] I. Perfilieva, and D. Adamczyk, "Selection of Keypoints in 2D Images Using F-Transform", 19th International ConferenceIn on Information Processing and Management of Uncertainty in Knowledge-Based Systems(IPMU), Milan, Italy, Vol.1602, July2022, pp.418-430.
[20] F.M. Megahed,W.H. Woodall and J.A. Camelio, "A review and perspective on control charting with image data.", Journal of quality technology, Vol.43, NO.2, November2011, pp. 83-98.
[21] B. M. Colosimo, "Modeling and monitoring methods for spatial and image data.", Quality Engineering, Vol.30, NO.1, December2017, pp. 94-111.
[22] B.M. Colosimo and M. Pacella, "A comparison study of control charts for statistical monitoring of functional data.", International Journal of Production Research, Vol.48, NO.6, March2009, pp.1575-1601.
[23] B.M. Colosimo,,P. Cicorella, M. Pacella and M.Blaco, "From profile to surface monitoring: SPC for cylindrical surfaces via Gaussian processes.", Journal of Quality Technology, Vol.46, NO.2, November2017, pp. 95-113.
[24] M. Koosha, R. Noorossana, and F. Megahed, "Statistical process monitoring via image data using wavelets.", Quality and Reliability Engineering International, Vol.33, NO.8, December2017, pp. 2059-2073.
[25] M. Reis and G. Gins, "Industrial process monitoring in the big data/industry 4.0 era: From detection, to diagnosis, to prognosis.", Processes, Vol.5, NO.3, June2017, pp. 35.