A molecular dynamics study on the wettability property of modified hydrophilic quartz (001) surface with hydrophobic nanoparticles

Document Type : Mining Engineering Article

Authors

1 Collage of Engineering, Urmia University, Urmia, Iran

2 Department of Mining Eng., Sahand University of Technology, Tabriz,, Iran

3 Department of Eng., Urmia university, Urmia, Iran

Abstract

In this study, molecular dynamics simulation was used to investigate the modification of quartz surface with adsorption of polystyrene and graphene nanoparticles. The simulations were performed on the super-hydrophilic quartz (001) surface. Polystyrene nanoparticles in three different percentages of surface coverage (5, 7, and 10) and one, two, four, and six layers’ graphene nano-sheets were created and adsorbed on the quartz surface. Then, contact angle, dipole moments, and intermolecular and intermolecular interactions between different nano-particles, quartz surface as a super hydrophilic substrate, and water molecules in the nano droplets were measured as the indicators of surface wettability. Analysis of the simulation results showed that the net and uncovered surface of quartz tolerates a high and asymmetric distribution of partial charge, causing a severe surface stress and intense hydrophilic behavior of the mineral surface. However, with the adsorption of polystyrene and graphene nanoparticles, the wettability behavior of the surface was changed to hydrophobic. Besides, changes in the surface energy due to nanoparticle adsorption, led to extensive changes in the dipole moment arrangement of water molecules on the quartz surface.

Keywords


[1]  J. Berg, “Wettability”. 4th ed, CRC Press, NW, USA, 1993.
[2] B. Kharazian, A. Ahmad, and A. Mabudi, “A molecular dynamics study on the binding of gemcitabine to human serum albumin”. Journal of Molecular Liquids, Vol. 337, 1 September 2021 2021: p. 116496.
[3] M. Yeganeh, and N. Mohammadi, “Superhydrophobic surface of Mg alloys: A review”. Journal of magnesium and alloys, Vol. 6, Issue. 1, March 2018: p. 59-70.
[4] X. Jiang, R. Dong, H. Li, Y. He, and T. Xie, “Smart collectors: Control of the wettability and floatability of quartz with UV irradiation”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 546, 5 June 2018: p. 124-128.
[5] J. Taheri-Shakib, A. Shekarifard, and H. Naderi, “Investigating wettability alteration of heavy oil due to microwave radiation: based on changes of polar components”. European Association of Geoscientists & Engineers, Vol. 2018, Apr 2018: p.1 – 5.
[6] M. Lotfi, S.A. Sajjady, and S. Amini, “Wettability analysis of titanium alloy in 3D elliptical ultrasonic assisted turning”. International Journal of Lightweight Materials and Manufacture Vol. 2, Issue. 3, September 2019: p. 235-240.
[7] A. Mabudi, M. Noaparast, M. Gharabaghi, and V. R. Vasquez, “Polystyrene nanoparticles as a flotation collector: A molecular dynamics study”. Journal of Molecular Liquids, Vol. 275, 1 February 2019: p. 554-566.
[8] A. Mabudi, M. Noaparast, M. Gharabaghi, and V. R. Vasquez, “A molecular dynamics study on the wettability of graphene-based silicon dioxide (glass) surface”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 569, 20 May 2019: p. 43-51.
[9] S. Yang, R. Pelton, A. Raegen, M. Montgomery, and K. Dolnoki-Veress , “Nanoparticle flotation collectors: mechanisms behind a new technology”. Langmuir, Vol. 27, Issue. 17, 26 July 2011: p. 10438-10446.
[10] S. Yang, and R. Pelton, “Nanoparticle flotation collectors II: the role of nanoparticle hydrophobicity”. Langmuir, Vol. 27, Issue. 18, 10 August 2011: p. 11409-11415.
[11] S. Yang, R. Pelton, M. Montgomery, and Y. Cui, “Nanoparticle flotation collectors III: the role of nanoparticle diameter”. ACS applied materials & interfaces, Vol. 4, Issue. 9, 7 August 2012: p. 4882-4890.
[12] S. Yang, R. Pelton, C. Abraka, Z. Dai, M. Montgomery, M. Xu, and J. A. Bos, “Towards nanoparticle flotation collectors for pentlandite separation”. International Journal of Mineral Processing, Vol. 123, 10 September 2013: p. 137-144.
[13] A. K. Geim, “Graphene: status and prospects”. Science, Vol. 324, No. 5934, 19 June 2009: p. 1530-1534.
[14] X. Li, Y. Yu, S. Wageh, A. A. Al-Ghamdi, and J. Xie, “Graphene in photocatalysis: a review”. Small, Vol. 12, Issue. 48, 2 November 2016: p. 6640-6696.
]15 [محمدرضا عبدی پور فرد، و مهدی صاحبی، ‏"بررسی عبور آب از نانوکانال متشکل از صفحات گرافن به روش شبیه‌سازی دینامیک مولکولی". نشریه مدل سازی در مهندسی, دوره 20، شماره 68، فروردین 1401، صفحه 163-153.
]16 [مائده رحیم نژاد، بهمن وحیدی، بهمن ابراهیمی حسین­زاده، و فاطمه یزدیان، "شبیه سازی دینامیک مولکولی برهمکنش داروی ضد سرطان پاکلیتاکسل با غشای سلولی: بررسی تغییرات انرژی واندروالسی و فاصله مرکز جرم". نشریه مدل سازی در مهندسی, دوره 17، شماره 57، تیر 1398، صفحه 25-15.
]17 [سعید روحی، یونس علیزاده، و رضا انصاری، "بررسی خواص مکانیکی پلی وینیل پیرولیدون تقویت شده با نانولوله های کربنی تک جداره با استفاده از روش شبیه سازی دینامیک مولکولی و مدلسازی المان محدود". نشریه مدل سازی در مهندسی, دوره 16، شماره 52، فروردین 1397، صفحه 381-373.
]15 [امین یاسینی، و محمود شریعتی، "مدل سازی و شبیه سازی رفتار کمانشی نانو سیم های سیلیسیم و با استفاده از روش مکانیک ساختاری". نشریه مدل سازی در مهندسی, دوره 15، شماره 50، مهر 1396، صفحه 93-85.
[19] J. Lange, F. Gomes M. Nele, F. W. Tavares, L. Segtovich, G. Silva, and J. C. Pinto, “Molecular Dynamic Simulation Of Oxaliplatin Diffusion In Poly (Lactic Acid‐co‐glycolic acid). Part A: parameterization and validation of the force‐field CVFF”. Macromolecular Theory and Simulations, Vol. 25, Issue. 1, January 2016: p. 45-62.
[20] A. Y. Toukmaji, and J.A. Board Jr, “Ewald summation techniques in perspective: a survey”. Computer physics communications, Vol. 95, Issues. 2–3, June 1996: p. 73-92.
[20] R. A. Hebbar, A. Isloor, and A. Ismail, “Contact angle measurements”.in Membrane Characterization, Chapter 12, 3 March 2017:  p. 219-255.