Qualitative Evaluation of Clusters in Wireless Sensor Networks Using Fuzzy Logic

Document Type : Computer Article

Author

Computer Engineering Department, Faculty of Electrical and Computer Engineering, Hakim Sabzevari University.

Abstract

In most applications of wireless sensor networks, it is not possible to charge the nodes' batteries, so the protocols designed for these networks must be as energy-efficient as possible. Clustering is one of the main approaches to designing energy-efficient and scalable protocols for wireless sensor networks. The use of clusters reduces the communication overhead caused by data transmission as well as energy consumption and wave interference between nodes. Despite the importance of clustering in wireless sensor networks, no criteria have yet been proposed to evaluate the quality of clusters derived from clustering algorithms. This paper defines several criteria for evaluating the quality of clusters formed in different clustering protocols. Then, these criteria are combined using fuzzy logic. With the help of the resulting fuzzy criterion, the quality of clusters formed in different clustering algorithms can be better compared. Finally, the correctness and feasibility of this fuzzy evaluation criterion have been verified by simulating three applied protocols and comparing the metrics evaluation results with what is actually happening.

Keywords

Main Subjects


[1] P. Neamatollahi, S. Abrishami, M. Naghibzadeh, M. H. Yaghmaee Moghaddam, and O. Younis, “Hierarchical Clustering-Task Scheduling Policy in Cluster-Based Wireless Sensor Networks,” IEEE Trans. Ind. Informatics, vol. 14, no. 5, May 2018, pp. 1876–1886.

]2[  قاسم میربابایی رکنی، مسعود رادمهر، علیرضا ذکریازاده، "مدلسازی مدیریت منابع انرژی پراکنده در ریزشبکه با استفاده از روش توزیع شده"، نشریه مدلسازی در مهندسی، دوره 17، شماره 57، تابستان 1398، صفحه 241-252.

[3] P. Neamatollahi, M. Naghibzadeh, and S. Abrishami, “Fuzzy-Based Clustering-Task Scheduling for Lifetime Enhancement in Wireless Sensor Networks,” IEEE Sens. J., vol. 17, no. 20, 2017, pp. 6837–6844.
[4] P.-Y. Kong and Y. Song, “Artificial Neural Network Assisted Sensor Clustering for Robust Communication Network in IoT-based Electricity Transmission Line Monitoring,” IEEE Internet Things J., 2022, pp. 1–1.
]5[ فرشاد نژادشاه محمد، "ارائه الگوریتم خوشه‌بندی چندمرحله‌ای در مدل‌سازی ریاضی تولید معادن"، نشریه مدلسازی در مهندسی، دوره 17، شماره 56، بهار 1398، صفحه 267-279.
[6] A. S. Rostami, M. Badkoobe, F. Mohanna, H. Keshavarz, A. A. R. Hosseinabadi, and A. K. Sangaiah, “Survey on clustering in heterogeneous and homogeneous wireless sensor networks,” J. Supercomput., vol. 74, no. 1, Jan. 2018, pp. 277–323.
[7] N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, “Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey,” IEEE Commun. Surv. Tutorials, vol. 15, no. 2, Jan 2013, pp. 551–591.
[8] X. Liu, “Atypical Hierarchical Routing Protocols for Wireless Sensor Networks: A Review,” IEEE Sens. J., vol. 15, no. 10, Oct. 2015, pp. 5372–5383.
[9] C. Lin, G. Han, X. Qi, J. Du, T. Xu, and M. Martinez-Garcia, “Energy-Optimal Data Collection for Unmanned Aerial Vehicle-Aided Industrial Wireless Sensor Network-Based Agricultural Monitoring System: A Clustering Compressed Sampling Approach,” IEEE Trans. Ind. Informatics, vol. 17, no. 6, Jun. 2021, pp. 4411–4420.
[10] P. Neamatollahi, M. Naghibzadeh, S. Abrishami, and M.-H. Yaghmaee, “Distributed Clustering-Task Scheduling for Wireless Sensor Networks Using Dynamic Hyper Round Policy,” IEEE Trans. Mob. Comput., vol. 17, no. 2, Feb. 2018, pp. 334–347.
[11] R. Dogra, S. Rani, H. Babbar, S. Verma, K. Verma, and J. J. P. C. Rodrigues, “DCGCR: Dynamic Clustering Green Communication Routing for Intelligent Transportation Systems,” IEEE Trans. Intell. Transp. Syst., 2022, pp. 1–9.
[12] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An application-specific protocol architecture for wireless microsensor networks,” IEEE Trans. Wirel. Commun., vol. 1, no. 4, Oct. 2002, pp. 660–670.
[13] O. Younis and S. Fahmy, “HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks,” IEEE Trans. Mob. Comput., vol. 3, no. 4, Oct. 2004, pp. 366–379.
[14] H. Taheri, P. Neamatollahi, M. Naghibzadeh, and M.-H. Yaghmaee, “Improving on HEED protocol of wireless sensor networks using non probabilistic approach and fuzzy logic (HEED-NPF),” in 2010 5th International Symposium on Telecommunications, IST 2010, 2010, pp. 193–198.
]15[ حسین ناهید تیتکانلو، رکسانا فکری، "عباس کرامتی، مدلسازی عدم قطعیت در فرایند ارزیابی عملکرد کارکنان مبتنی بر تئوری شواهد و تئوری فازی"، نشریه مدلسازی در مهندسی، دوره 15، شماره 51، زمستان 1396، صفحه 411-432.
[16] P. Neamatollahi and M. Naghibzadeh, “Distributed unequal clustering algorithm in large-scale wireless sensor networks using fuzzy logic,” J. Supercomput., vol. 74, no. 6, Jun 2018, pp. 2329–2352.
[17] P. Neamatollahi, M. Naghibzadeh, and S. Abrishami, “Fuzzy-Based Clustering-Task Scheduling for Lifetime Enhancement in Wireless Sensor Networks,” IEEE Sens. J., vol. 17, no. 20, Oct 2017, pp. 6837–6844.
[18] S. H. Kang and T. Nguyen, “Distance Based Thresholds for Cluster Head Selection in Wireless Sensor Networks,” IEEE Commun. Lett., vol. 16, no. 9, Sep. 2012, pp. 1396–1399.
[19] V. Pal, G. Singh, and R. P. Yadav, “Balanced Cluster Size Solution to Extend Lifetime of Wireless Sensor Networks,” IEEE Internet Things J., vol. 2, no. 5, 2015, pp. 399–401.
[20] M. Zhao, Y. Yang, and C. Wang, “Mobile data gathering with load balanced clustering and dual data uploading in wireless sensor networks,” IEEE Trans. Mob. Comput., vol. 14, no. 4, 2015, pp. 770–785.
[21] M. Tarhani, Y. S. Kavian, and S. Siavoshi, “SEECH: Scalable Energy Efficient Clustering Hierarchy Protocol in Wireless Sensor Networks,” IEEE Sens. J., vol. 14, no. 11, Nov. 2014, pp. 3944–3954.
[22] V. Krishnaswamy and S. S. Manvi, “Trusted node selection in clusters for underwater wireless acoustic sensor networks using fuzzy logic,” Phys. Commun., vol. 47, Aug. 2021, p. 101388.