Design and Analysis of Grid-tied PV Power conditioning System Through LCL filter based on Capacitor Current Active Damping with Positive Output Virtual Impedance

Document Type : Power Article

Authors

1 Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

2 Department of Electrical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

In the grid-tied PV inverter systems, the design of a proper power conditioning system is an important issue to ensure high-quality power injection to the grid. In the low-voltage distribution network, the grid impedance variations change the resonant frequency of LCL filters. The capacitor current feedback active damping is one the most effective procedures to suppress the resonance of LCL filters. In this paper, A proportional-integral (PI) capacitor current feedback active damping method with positive virtual impedance shaping is proposed. Utilizing the proposed control strategy, the stability of the grid-tied PV inverter system against changes in grid impedance is well maintained. In addition, the system offers good performance against the PV power variations. In order to track the maximum power point, the incremental conductance (IC) procedure along with an integral regulator is utilized. Simulation of the overall system also includes solar panels, maximum power point tracking algorithm, DC-DC boost converter as well as an inverter, and LCL filter to model the grid-tied PV system with the most possible details. Simulations are carried out in MATLAB/Simulink, and it has been proved that the proposed control system maintains its stability against grid parameters variations.

Keywords

Main Subjects


[1] مسعود اسماعیلی، مصطفی صدیقی‌زاده، حسام یارمحمدی، "کنترل یکپارچه ژنراتور القایی، محدودکننده جریان خطا و ذخیره‌ساز انرژی در مزارع بادی"، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 55، زمستان 1397، صفحه 87-100.
[2] سید محمد مهدی میرطلائی، گلناز تاجمیر، "طراحی، مدلسازی و ساخت یک مبدل Z-Source بهره بالا برای کاربرد در اتصال منابع انرژی تجدیدپذیر به شبکه برق"، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 53، تابستان 1397، صفحه 221-229.
[3] پرویز نجفی، عباس هوشمند، مهدی شاهپرستی، "مبدل واسط ادغام شده با قابلیت متعادل سازی ولتاژهای لینک DC در ریزشبکه هیبریدی دوقطبی"، نشریه مدل‌سازی در مهندسی، دوره 18، شماره 60، بهار 1399، صفحه 201-216.
[4] آرمینه دستگیری، مجید حسین پور، علی سیفی، "مبدل DC-DC بدون ترانسفورماتور افزاینده با ضریب بوست بالا مبتنی بر شبکه خازن سوئیچ‌شده فعال"، نشریه مدل‌سازی در مهندسی، دوره 19، شماره 66، مهر 1400، صفحه 23-36.
[5] P. Manoharan, U. Subramaniam, T.S. Babu, S. Padmanaban, J.B. Holm-Nielsen, M. Mitolo and S. Ravichandran, “Improved Perturb and Observation Maximum Power Point Tracking Technique for Solar Photovoltaic Power Generation Systems,” IEEE Systems Journal, Vol. 15, NO. 2, 2020, pp. 3024-35.
[6] S. Bhattacharyya, S. Samanta and S. Mishra, “Steady Output and Fast Tracking MPPT (SOFT-MPPT) for P&O and InC Algorithms,” IEEE Transactions on Sustainable Energy, Vol. 12, NO. 1, 2020, pp. 293-302.
[7] M. Rasekh and M. Hosseinpour, “Adequate tuning of LCL filter for robust performance of converter side current feedback control of grid connected modified–y-source inverter”, International Journal of Industrial Electronics Control and Optimization, Vol. 3, 2020, pp. 365-378.
[8] بابک حسینی منتظر، جواد علمایی، مجید حسین پور، بابک مظفری، "یک ساختار دوطرفه تعمیم یافته حاوی دیود برای اینورتر چندسطحی با تعداد سوییچ و درایور کمتر"، نشریه مدل‌سازی در مهندسی، دوره 19، شماره 66، مهر 1400، صفحه 37-51.
[9] K. Jalili, S. Bernet, “Design of LCL Filters of Active-Front-End Two-Level Voltage-Source Converters,” IEEE Transactions on Industrial Electronics, Vol. 56, NO. 5, 2009, pp. 1674-1689.
[10] M. Liserre, R. Teodorescu and F. Blaabjerg, “Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values,” IEEE Transactions on Power Electronic, Vol. 21, NO. 1, 2006, pp. 263–272.
[11] W. Xia and J. Kang, “Stability of LCL-filtered grid-connected inverters with capacitor current feedback active damping considering controller time delays,” Journal of Modern Power Systems and Clean Energy, Vol. 5, NO.4, 2017, pp. 584–598.
[12] X. Zhou, L. Zhou, Y. Chen, Z. Shuai, J.M. Guerrero, A. Luo, W. Wu and L. Yang, “Robust Grid-Current-Feedback Resonance Suppression Method for LCL-Type Grid-Connected Inverter Connected to Weak Grid,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 6, NO. 4, 2018, pp. 2126-2137.
[13] M. Hosseinpour and N. Rasekh, “A Single-Phase Grid-tied PV based Trans-Z-Source Inverter Utilizing LCL filter and Grid Side Current Active Damping”, Journal of Energy Management and Technology, Vol. 3, 2019, pp. 67-77.
[14] M. Hosseinpour, M. Asad and N. Rasekh, “A Step-by-Step Design Procedure of a Robust Control Design for Grid-Connected Inverter by LCL Filter in a Weak and Harmonically Distorted Grid”, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, Vol. 45, 2021, pp. 843-859.
[15] A. Kouchaki and M. Nymand “Analytical design of passive LCL filter for three-phase two-level power factor correction rectifiers,” IEEE Transactions on Power Electronics, Vol. 33, NO. 4, 2018, pp. 3012-3022.
[16] N. Rasekh, M.M. Rahimian, M. Hosseinpour, A. Dejamkhooy and A. Akbarimajd, “A step by step design procedure of PR controller and capacitor current feedback active damping for a LCL-type grid-tied T-type inverter”, In 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), 2019, pp. 612-617.
[17] Z. Xin, P.C. Loh, X. Wang, F. Blaabjerg and Y. Tang, “Highly Accurate Derivatives for LCL-Filtered Grid Converter With Capacitor Voltage Active Damping,” IEEE Transactions on Power Electronics, Vol. 31, NO. 5, 2016, pp.3612-3625.
[18] M. Huang, X. Wang, P.C. Loh and F. Blaabjerg, “Active Damping of LLCL-Filter Resonance Based on LC-Trap Voltage or Current Feedback,” IEEE Transactions on Power Electronics, Vol. 31, NO. 3, 2015, pp. 2337-2346.
[19] M. Hosseinpour, A. Kholousi, and A. Poulad, “A robust controller design procedure for LCL‐type grid‐tied proton exchange membrane fuel cell system in harmonics‐polluted network”, Energy Science & Engineering, Vol. 10, NO. 10, 2022, pp. 3798-3818.
[20] Y. He, X. Wang, X. Ruan, D. Pan and K. Qin, “Hybrid Active Damping Combining Capacitor Current Feedback and Point of Common Coupling Voltage Feedforward for LCL-Type Grid-Connected Inverter,” IEEE Transactions on Power Electronics, Vol. 36, NO. 2, 2021, pp. 2373-2383.
[21] N. Rasekh, and M. Hosseinpour, “LCL filter design and robust converter side current feedback control for grid-connected Proton Exchange Membrane Fuel Cell system”, International Journal of Hydrogen Energy, Vol. 45, NO. 23, 2020, pp.13055-13067.
[22] D. Pan, X. Ruan, C. Bao, W. Li and X. Wang, “Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter,” IEEE Transactions on Power Electronics, Vol. 29, NO. 7, 2014, pp. 3414–3427.
[23] X. Wang, F. Blaabjerg and P.C. Loh, “Grid-current-feedback active damping for LCL resonance in grid-connected voltage-source converters,” IEEE Transactions on Power Electronics, Vol. 31, NO. 1, 2016, pp. 213–223.
[24] X. Wang, F. Blaabjerg and P.C. Loh, “Virtual RC, “Virtual RC damping of LCL filtered voltage source converters with extended selective harmonic compensation,” IEEE Transactions on Power Electronics, Vol. 30, NO. 9, 2015, pp. 4726– 4737.
[25] X. Li, X. Wu, Y. Geng, X. Yuan, C. Xia and X. Zhang, “Wide damping region for LCL-type grid-connected inverter with an improved capacitor-current-feedback method,” IEEE Transactions on Power Electronics, Vol. 30, NO. 9, 2015, pp. 5247–5259.
[26] C. Chen C, Xiong J, Wan Z, Lei J, Zhang K., “A time delay compensation method based on area equivalence for active damping of an LCL-type converter,” IEEE Transactions on Power Electronics, Vol. 32, NO. 1, 2017, pp. 762–772.
[27] D, Pan, X, Ruan, C, Bao, W, Li and X. Wang, “Optimized controller design for LCL-type grid-connected inverter to achieve high robustness against grid-impedance variation,” IEEE Transactions on Industrial Electronics, Vol. 62, NO. 3, 2015, pp. 1537–1547.
[28] Q. Huang and K. Rajashekara, “Virtual RLC active damping for grid-connected inverters with LCL filters,” in Proc. 32th Annu. IEEE Appl. Power Electron. Conf. and Exp. 2017, pp. 424–429.
[29] Y. He, X. Wang, X. Ruan, D. Pan, X. Xu and F. Liu, “Capacitor-Current Proportional-Integral Positive Feedback Active Damping for LCL-Type Grid-Connected Inverter to Achieve High Robustness Against Grid Impedance Variation,” IEEE Transactions on Power Electronics, Vol. 34, NO. 12, 2019, pp. 12423-12436.
[30] D. Yang, X. Ruan and F. Wu, “A real-time computation method with dual sampling mode to improve the current control performance of the LCL-type grid-connected inverter,” IEEE Transactions on Industrial Electronics, Vol. 62, NO. 7, 2015, pp. 4563–4572.
[31] C. Zhou, H. Jiang, and F. Xie, “Control research of NPC three level high-power grid connected inverter based on multi sampling,” in Proc. 13th Annu. IEEE Conf. on Ind. Electron. Appl., 2018.
[32] X. Li, J. Fang, Y. Tang, X. Wu and Y. Geng, “Capacitor voltage feedforward with full delay compensation to improve weak grids adaptability of LCL-filtered grid-connected converters for distributed generation systems,” IEEE Transactions on Power Electronics, Vol. 33, NO. 1, 2018, pp. 749-64.
[33] J. Yin, S. Duan and B. Liu, “Stability analysis of grid-connected inverter with LCL filter adopting a digital single-loop controller with inherent damping characteristics,” IEEE Transactions on Industrial Electronics. Vol. 9, NO. 2, May 2013, pp. 1104–1112.
[34] MAGNETICS. Power-core-catalog. (2015). [online] Available: www.maginc.com /getattachment/ Products /Powder-Cores/Learn-More-about-Powder-Cores/2015-Magnetics-Powder-Core-Catalog.pdf
[35] D.G. Holmes, T.A. Lipo, B.P. Mcgrath and W.Y. Kong, “Optimized design of stationary frame three phase AC current regulators,” IEEE Transactions on Power Electronics, Vol. 24, NO. 11, 2009, pp. 2417–2426.
[36] D. Pan, X. Ruan, X. Wang, H. Yu and Z. Xing, “Analysis and design of current control schemes for LCL-type grid-connected inverter based on a general mathematical model,” IEEE Transactions on Power Electronics, Vol. 32, NO. 6, 2017, pp. 4395–4410.
[37] M.H. Anowar and P. Roy, “A Modified Incremental Conductance Based Photovoltaic MPPT Charge Controller,” 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 7-9 February, 2019.
[38] A. Saidi and C. Benachaiba, “Comparison of IC and P&O algorithms in MPPT for grid connected PV module,” in International Conference on Modelling, Identification and Control (ICMIC), Algiers, 2016.