Co-optimized bidding strategy of an integrated wind-thermal system in electricity day ahead and reserve market under uncertainties

Document Type : Power Article

Authors

1 management faculty , Allame Tabataba'e University, Tehran, Iran.

2 Industrial Management Dept, Faculty of Management and Accounting , Allameh Tabataba’i University, Tehran, Iran

3 Associate Professor , Department of Management and Accounting , Allameh Tabataba’i University, Tehran, Iran

Abstract

Nowadays renewable energy sources, such as wind and solar, whether independently or integrated with other resources, are considered in power system, specifically self-scheduling, bidding and offering strategy problems. However, the uncertain nature of these sources has turned out the greatest challenge for their owners, which makes the bidding and offering in the restructured electricity market more complicated because wind energy generation may cause penalty fees for its generation mismatches. Hence, the primary objective of this paper is to suggest a novel bidding strategy framework based on fuzzy random variable for a wind-thermal system in the electricity market for the first time. The uncertainties associated with day ahead energy, spinning reserve market prices and imbalance prices, are characterized by random fuzzy variables and the uncertainties associated with wind power outputs are modeled as a LR fuzzy numbers. The proposed self-scheduling model maximizes the expected profits while it controls the risk by providing different possibility and probability levels for decision makers.

A mathematical modeling approach is applied in this research by using a mixed-integer non-linear programming model which is implemented in Lingo software in a case study of thermal generation unit to investigate the efficiency of the proposed model. A sensitivity analysis is applied to validate the performance of the proposed model. Numerical results reveal that taking advantage of wind power generation alongside with thermal generation will substantially increase the profitability of the integrated generation company.

Keywords

Main Subjects


[1] آیین، مرتضی. "تصمیم گیری تولیدکنندگان انرژی در حضور عدم قطعیت بازارهای برق. پایان نامه دکتری". دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته. (1393)
[2] جلیلوند نژاد، امیر. "ارائه مدلی استوار برای مدیریت فروش برق در بازار رقابتی". پایان نامه دکتری. دانشگاه خواجه نصیر الدین طوسی. (1395)
[3] Itaba, Satoshi, and Hiroyuki Mori. “A Fuzzy-Preconditioned GRBFN Model for Electricity Price Forecasting.” Procedia Computer Science 114 (2017): 441–48.
[4] نظری فارسانی، وحید. "ارائه یک روش جدید پیش بینی بازه ای قیمت برق مبتنی بر یادگیری عمیق". پایان نامه کارشناسی ارشد، دانشگاه تربیت مدرس. (1398)
[5] Jakub Nowotarski and Rafal Weron, “Merging Quantile Regression with Forecast Averaging to Obtain More Accurate Interval Forecasts of Nord Pool Spot Prices,” RePEc: Research Papers in Economics,)2014(:0–4.
[6] Nowotarski, Jakub, and Rafał Weron. “Computing Electricity Spot Price Prediction Intervals Using Quantile Regression and Forecast Averaging.” Computational Statistics 30, no. 3 (2015): 791–803.
[7] Yazdaninejad, Mohsen, and Nima Amjady. “Risk-Minimizing Stochastic Self-Scheduling Model for Microgrid in Day-Ahead Electricity Market.” International Transactions on Electrical Energy Systems 27, no. 5 (2017): 1-18.
[8] Khaloie, Hooman, Amir Abdollahi, Masoud Rashidinejad, and Pierluigi Siano. “Risk-Based Probabilistic-Possibilistic Self-Scheduling Considering High-Impact Low-Probability Events Uncertainty.” International Journal of Electrical Power & Energy Systems 110 (2019): 598–612.
[9] Goroohi Sardou, Iman, and Mostafa Ansari. “Risk-Constrained Self-Scheduling of a Generation Company Considering Natural Gas Flexibilities for Wind Energy Integration.” Journal of Renewable and Sustainable Energy 12, no. 1 (2020): 1-14.
[10] Jiao, P.H, J.J Chen, B.X Qi, Yanlei Zhao, and Ke Peng. “Electricity Price Driven Active Distribution Network Planning Considering Uncertain Wind Power and Electricity Price.” International Journal of Electrical Power & Energy Systems 107 (2019): 422–437.
[11] Najafi, Arsalan, Mahdi Pourakbari-Kasmaei, Michal Jasinski, Matti Lehtonen, and Zbigniew Leonowicz. “A Medium-Term Hybrid IGDT-Robust Optimization Model for Optimal Self Scheduling of Multi-Carrier Energy Systems.” Energy 238 (2022): 1-15.
[12] Javid Khorasani, Ehsan Monabbati, and Habib Rajabi Mashhadi. “Designing an Optimal Linear Bid Function in a Pay-As-Bid Electricity Market.” International Journal of Industrial Electronics Control and Optimization 1, no. 2 (2018): 133–142.
[13] Yazdaninejad, Mohsen, Nima Amjady, and Shahab Dehghan. “VPP Self-Scheduling Strategy Using Multi-Horizon IGDT, Enhanced Normalized Normal Constraint, and Bi-Directional Decision-Making Approach.” IEEE Transactions on Smart Grid, 11(4), (2019): 3632–3645.
[14] Lee, Duehee, Hunyoung Shin, and Ross Baldick. “Bivariate Probabilistic Wind Power and Real-Time Price Forecasting and Their Applications to Wind Power Bidding Strategy Development.” IEEE Transactions on Power Systems 33, no. 6 (2018): 6087–6097.
[15] Dai, Ting, and Wei Qiao. “Optimal Bidding Strategy of a Strategic Wind Power Producer in the Short-Term Market.” IEEE Transactions on Sustainable Energy 6, no. 3 (2015): 707–719.
[16] Guerrero-Mestre, Victoria, Agustin A Sanchez, Javier Contreras, and Joao. “Optimal Bidding of a Group of Wind Farms in Day-Ahead Markets through an External Agent” 31, no. 4 ( 2016): 2688–2700.
[17] Soares, Tiago, Pierre Pinson, T Jensen, and Hugo Morais. “Optimal Offering Strategies for Wind Power in Energy and Primary Reserve Markets.” IEEE Transactions on Sustainable Energy 7, no. 3 (2016): 1036–1045.
[18] Li, Yaowang, Shihong Miao, Binxin Yin, Junyao Liu, Weichen Yang, and Songyan Zhang. “Research on Optimal Self‐Scheduling Horizon for the Wind Power and Large‐Scale CAES Combined System.” IET Generation, Transmission & Distribution 13, no. 22 (2019): 5197–5206.
[19] Baringo, Ana, Luis Baringo, and José M. Arroyo. “Day-Ahead Self-Scheduling of a Virtual Power Plant in Energy and Reserve Electricity Markets under Uncertainty.” IEEE Transactions on Power Systems 34, no. 3 (2019): 1881–1894.
[20] Zhou, Yuzhou, Qiaozhu Zhai, Meiyu Zhou, and Xuan Li. “Generation Scheduling of Self-Generation Power Plant in Enterprise Microgrid with Wind Power and Gateway Power Bound Limits.” IEEE Transactions on Sustainable Energy 11, no. 2 (2020): 758–770.
[21] Alahyari, Arman, Mehdi Ehsan, and MirSaeed Mousavizadeh. “A Hybrid Storage-Wind Virtual Power Plant (VPP) Participation in the Electricity Markets: A Self-Scheduling Optimization Considering Price, Renewable Generation, and Electric Vehicles Uncertainties.” Journal of Energy Storage 25 (2019): 100812.
[22] Attarha, Ahmad, Nima Amjady, Shahab Dehghan, and Behdad Vatani. “Adaptive Robust Self-Scheduling for a Wind Producer with Compressed Air Energy Storage.” IEEE Transactions on Sustainable Energy 9, no. 4 (2018): 1659–1671.
[23] Jamali, Ali, Jamshid Aghaei, Masoud Esmaili, Ahmad Nikoobakht, Taher Niknam, Miadreza Shafie‐khah, and João P. S. Catalào. “Self-Scheduling Approach to Coordinating Wind Power Producers with Energy Storage and Demand Response.” IEEE Transactions on Sustainable Energy 11, no. 3 (July 1, 2020): 1210–1219.
[24] کوچکی نژاد، حسن، و فاطمه کیاده. "تحلیلی بر متغیر تصادفی فازی و متغیر تصادفی غیر فازی در محاسبات". پایان نامه کارشناسی ارشد، دانشگاه گیلان. (1397) 
[25] محمدی لشگان، سارا. "شبیه سازی متغیر تصادفی فازی و برخی از کاربردها در محاسبات". پایان نامه کارشناسی ارشد، دانشگاه گیلان. (1397)
[26] فرهادی، هاجر. "روش هایی برای حل مسائل برنامه ریزی دو سطحی". پایان نامه کارشناسی ارشد، دانشگاه شهرکرد. (1393)
[27] باقری، منصور، محمود میری، و ناصر شابختی. محاسبه شاخص قابلیت اعتماد فازی سازه ها با استفاده از تکنیک بهینه سازی آلفا  برشها. نشریه مهندسی عمران و محیط زیست 43 ، 4 (1392): 1-12.
 [28] دهقان، احسان. "ارائه یک مدل ریاضی در برنامه ریزی تولید و مسیریابی حمل و نقل یکپارچه در زنجیره تأمین حلقه بسته با در نظر گرفتن عدم قطعیت". پایان نامه دکتری. دانشگاه سمنان. (1399)
[29] توکلی مقدم، رضا، مهدی علینقیان، و علیرضا سلامت بخش. "مسأله‌ مسیر‌یابی وسائط نقلیه دوره‌ای با پنجره‌ زمانی در حالت رقابتی با روش شبیه‌سازی تبرید بهبودیافته". فصلنامه مهندسی حمل و نقل، 5،4 (1393): 449-470.