Numerical Simulation of Fluid Flow with Real Viscosity in a Centrifugal Pump by SPH Method

Document Type : Mechanics article

Authors

1 Mechanics Department, Malek-Ashtar university of technology

2 Marine Engineering Department,Mechanics Faculty,Malek-Ashtar University of Technology

3 Mechanics Department, Malek-Ashtar University of Technology

Abstract

In this paper, the Smoothed Particle Hydrodynamics (SPH) method with dynamic boundary condition has been used to simulate 3D Fluid flow in the centrifugal pump. Severe fluctuations in the field of pressure and velocity is one of the major problems in this method. In this paper, the fluctuations have been corrected using Delta and Shift algorithms. The simulation was numerically performed with real fluid viscosity (laminar and turbulence). Validation of this method indicated that in the case of real fluid viscosity, the Delta and Shift algorithms should be used simultaneously to obtain good agreement with the experimental data. To validate the pump results, a comparison was made between the numerical outputs and the performance curves of pump EN 125-315 of Pumpiran Company under relatively similar conditions. The results of this comparison showed that the error of simulation of pump head, consumption power and efficiency values compared with experimental data were about 12, 5.5 and 16 percent, respectively.

Keywords

Main Subjects


[1] محمد شریفی اصل، داود طغرایی و احمدرضا عظیمیان، «شبیه­سازی عددی انتقال حرارت جابه­ جایی در جریان مغشوش غیرنیوتنی نانوسیال در یک لوله افقی مدور»، مجله مدلسازی در مهندسی، دوره 16، شماره 53، 1397، صفحه 120-113.
[2] محمدمحسن شاه مردان، محمود نوروزی و امین شهبانی ظهیری نسایی، «بررسی عددی تأثیر گردابه ها بر روی افت فشار و تلفات جریان در داخل کانال با انبساط تدریجی صفحه­ای»، مجله مدلسازی در مهندسی، دوره 15، شماره 48، 1396، صفحه 60-45.
[3] قربان مهتابی، میترا ملازاده و فرزین سلماسی، «کاربرد شبیه­سازی عددی در تعیین موقعیت و ابعاد سوراخ آب (Hole Weep) کانال بتنی تحت ترازهای مختلف آب­زیرزمینی»، مجله مدلسازی در مهندسی، دوره 16، شماره 55، 1397، صفحه 278-267.
[4] داود طغرایی سمیرمی و شیرین میرفروغی، «بررسی عددی انتقال حرارت آمیخته نانوسیال با خواص متغیر داخل حفره
مستطیلی کم­عمق با درپوش متحرک»، مجله مدلسازی در مهندسی، دوره 16، شماره 55، 1397، صفحه 377-350.
[5] R. L. Dauherty, "A Further Investigation of Performance of Centrifugal Pumps When Pumping Oils" Bulletin, vol. 130, 1926.
[6] A. Stepanoff, "Pumping Viscous Oils with Centrifugal Pumps" Oil and Gas Journal, vol. 4, 1940, pp. 123-126.
[7] N. Tetlow, "A Survey of Modern Centrifugal Pump Practice for Oilfield and Oil Refinery Services" Proceedings of the Institution of Mechanical Engineers, vol. 150, no. 1, 1943, pp. 121-134.
[8] A. T. Ippen, "The influence of viscosity on centrifugal pump performance", Trans. ASME, Vol. 68 (1946), 1946, pp. 823-848.
[9] امجد احسنی/دکتر حسن کریمی، مدلسازی منحنی­های مشخصه یک پمپ گریز از مرکز دور بالا با استفاده از روش­های عددی، پایان­نامه مقطع کارشناسی ارشد رشته مهندسی هوافضا (آیرودینامیک)، دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، 1390.
[10] M. B. Ehghaghi and M. Vajdi, "Numerical and Experimental Study of splitter blades effect on the centrifugal pump performance" Modares Mechanical Engineering, vol. 15, no. 3, (In Persian), 2015, pp. 398-410.
[11] S. Huang, Y. Wei, C. Guo, and W. Kang, "Numerical Simulation and Performance Prediction of Centrifugal Pump’s Full Flow Field Based on OpenFOAM" Processes, vol. 7, no. 9, 2019, p. 605.  
[12] L. B. Lucy, "A numerical approach to the testing of the fission hypothesis" The astronomical journal, vol. 82, 1977, pp. 1013-1024.  
[13] R. A. Gingold and J. J. Monaghan, "Smoothed particle hydrodynamics: theory and application to non-spherical stars" Monthly notices of the royal astronomical society, vol. 181, no. 3, 1977, pp. 375-389.
[14] J. J. Monaghan, "Simulating free surface flows with SPH" Journal of computational physics, vol. 110, no. 2, 1994, pp. 399-406.
[15] یاسر جعفری، «روش شبیه سازی هیدرودینامیک ذرات هموار (SPH) و کاربردهای آن در هوافضا»، مجله فناوری در مهندسی هوافضا، سال اول، شماره 2، پاییز 1396، صفحه 15-1.
[16] H. Habibi, "Numerical simulation of blood flow in centrifugal heart pump by utilizing meshless smoothed particles hydrodynamic method" International Journal of Bio-Science and Bio-Technology, vol. 7, no. 3, 2015, pp. 73-82.
[17] G. Peng, G. Zhou, S. Fu, J. Ma, X. Huang, and Q. Zhu, "Preliminary study on internal flow simulation of centrifugal dredge pump by SPH algorithm" in IOP Conference Series: Earth and Environmental Science, vol. 163, no. 1: IOP Publishing, 2018, p. 012118.
[18] A. J. Crespo et al., "DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH)" Computer Physics Communications, vol. 187, 2015, pp. 204-216.
[19] J. J. Monaghan and J. C. Lattanzio, "A refined particle method for astrophysical problems" Astronomy and astrophysics, vol. 149, 1985, pp. 135-143.
[20] H. Gotoh, S. Shao, and T. Memita, "SPH-LES model for numerical investigation of wave interaction with partially immersed breakwater" Coastal Engineering Journal, vol. 46, no. 1, 2004, pp. 39-63.
[21] R. A. Dalrymple and B. Rogers, "Numerical modeling of water waves with the SPH method" Coastal engineering, vol. 53, no. 2-3, 2006, pp. 141-147.
[22] J. J. Monaghan, R. A. Cas, A. Kos, and M. Hallworth, "Gravity currents descending a ramp in a stratified tank" Journal of Fluid Mechanics, vol. 379, 1999, pp. 39-69.
[23] G. Batchelor, "Introduction to Fluid Dynamics", Cam. Univ. Press, Cambridge, UK, 1974.
[24] L. Verlet, "Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules" Physical review, vol. 159, no. 1, 1967, p. 98.
[25] A. J. Crespo, M. Gómez-Gesteira, and R. A. Dalrymple, "Boundary conditions generated by dynamic particles in SPH methods" Computers, materials and continua, vol. 5, no. 3, 2007, pp. 173-184.
[26] D. Molteni and A. Colagrossi, "A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH" Computer Physics Communications, vol. 180, no. 6, 2009, pp. 861-872.
[27] S. J. Lind, R. Xu, P. K. Stansby, and B. D. Rogers, "Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves" Journal of Computational Physics, vol. 231, no. 4, 2012, pp. 1499-1523.
[28] A. Skillen, S. Lind, P. K. Stansby, and B. D. Rogers, "Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body–water slam and efficient wave–body interaction" Computer Methods in Applied Mechanics and Engineering, vol. 265, 2013, pp. 163-173.
[29] E.-S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence, and P. Stansby, "Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method" Journal of computational Physics, vol. 227, no. 18, 2008, pp. 8417-8436.
[30] A. Mokos, "Multi-phase modelling of violent hydrodynamics using smoothed particle hydrodynamics (SPH) on graphics processing units (GPUs)": Thesis for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences ,The University of Manchester (United Kingdom), 2014.
[31] P. E. Raad and R. Bidoae, "The three-dimensional Eulerian–Lagrangian marker and micro cell method for the simulation of free surface flows" Journal of Computational Physics, vol. 203, no. 2, 2005, pp. 668-699.
[32] T. B. Silvester and P. W. Cleary, "Wave-structure interaction using smoothed particle hydrodynamics" a a, vol. 2, 2006, p. 2.
[33] R. W. Fox, A. T. McDonald, and P. J. Pritchard, "Introduction to fluid mechanics", John Wiley & Sons, sixth edition, 2004.
[34] Pumpiran, "EN 125-315 pump performance curve", http://pumpselect.ir/chart_en.aspx?name=EN%20125-315&flag_nafti=false