[1] M. Shariati, H. Hatami, H. Yarahmadi, and H. R. Eipakchi. “An experimental study on the ratcheting and fatigue behavior of polyacetal under uniaxial cyclic loading”. Materials & Design 34. (2012): 302–312.
[2] H. Hatami and M. Shariati. “Numerical and Experimental Investigation of SS304L Cylindrical Shell with Cutout Under Uniaxial Cyclic Loading”. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 43. No. 2 (2019): 139–153.
[3] M. Shariati, H. Hatami, H. Torabi, and H. R. Epakchi. “Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading”. Structural Engineering and Mechanics 44. no. 6 (2012): 753–762.
[4] M. Honarpishe and V. Zandian. “Investigation of Residual Stresses in Stress-Relieved Samples by Heat Treatment and Ultrasonic Methods Using Hole-Drilling Method”. Modares Mechanical Engineering 14. no. 15 (2015): 273–278.
[5] آقایی عطار، میلاد، و مجید قریشی. “پیشبینی تنشهای پسماند و کرنشهای الاستیک-پلاستیک در جوشکاری لیزری سوراخ کلیدی دیسک غیر همجنس مس و فولاد زنگ نزن 304". نشریه مدل سازی در مهندسی 18، 63، (1399): 166-151.
[6] S. O. Saied and A. A. El-Danaf. “Laser shock processing of 2024-T351 aluminum alloy: Microstructure and mechanical property modifications”. Materials & Design 156 (2018): 183–193.
[7] M. Dorman, M. B. Toparli, N. Smyth, A. Cini, M. E. Fitzpatrick, and P. E. Irving. “Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects”. Materials Science and Engineering A 548 (2012): 142–151.
[8] P. K. Sharp, Q. Liu, S. A. Barter, P. Baburamani, and G. Clark. “Fatigue life recovery in aluminium alloy aircraft structure”. Fatigue & Fracture of Engineering Materials & Structures 25. no. 2 (2002): 99–110.
[9] W. Braisted and R. Brockman. “Finite element simulation of laser shock peening”. International Journal of Fatigue 21 (1999): 719–724.
[10] J. Fu, Y. Zhu, C. Zheng, R. Liu, and Z. Ji. “Effect of laser shock peening on mechanical properties of Zr-based bulk metallic glass”. Applied Surface Science 313 (2014): 692–697.
[11] B. Dhakal and S. Swaroop. “Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy”. Journal of Materials Processing Technology 282 (2019): 616-640.
[12] R. M. White. “Elastic wave generation by electron bombardment or electromagnetic wave absorption”. Journal of Applied Physics 34. no. 7 (1963): 2123–2124.
[13] N. C. Anderholm. “Laser-generated stress waves”. Applied Physics Letters 16. no. 3 (1970): 113–115.
[14] P. Peyre, R. Fabbro, P. Merrien, and H. P. Lieurade. “Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour”. Materials Science and Engineering A 210. no. 1–2 (1996): 102–113.
[15] K. Ding and L. Ye. Physical and mechanical mechanisms of laser shock peening. Woodhead Publishing (2006): 7–46.
[16] C. Rubio-González et al. “Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy”. Materials Science and Engineering A 386. no. 1–2 (2004): 291–295.
[17] K. Y. Luo, J. Z. Lu, Q. W. Wang, M. Luo, H. Qi, and J. Z. Zhou. “Residual stress distribution of Ti-6Al-4V alloy under different ns-LSP processing parameters”. Applied Surface Science, 285 (2013): 607–615.
[18] Q. Liu, C. H. Yang, K. Ding, S. A. Barter, and L. Ye. “The effect of laser power density on the fatigue life of laser-shock-peened 7050 aluminium alloy”. Fatigue & Fracture of Engineering Materials & Structures 30. no. 11 (2007): 1110–1124.
[19] C. Rubio-González, C. Felix-Martinez, G. Gomez-Rosas, J. L. Ocaña, M. Morales, and J. A. Porro, “Effect of laser shock processing on fatigue crack growth of duplex stainless steel”. Materials Science and Engineering A 528. no. 3 (2011): 914–919.
[20] R. Sun et al. “Laser shock peening induced fatigue crack retardation in Ti-17 titanium alloy”. Materials Science and Engineering A 737 (2018): 94–104.
[21] M. Pavan, D. Furfari, B. Ahmad, M. A. Gharghouri, and M. E. Fitzpatrick. “Fatigue crack growth in a laser shock peened residual stress field”. International Journal of Fatigue 123 (2019): 157–167.
[22] W. Li et al., “Effect of laser shock peening on high cycle fatigue properties of aluminized AISI 321 stainless steel”. International Journal of Fatigue 153 (2020): 1-12
[23] J. Kaufman et al. “Effect of Laser Shock Peening Parameters on Residual Stresses and Corrosion Fatigue of AA5083”. Metals 11. no. 10. (2021) 1-10.
[24] X. Hu, J. Zhao, X. Teng, X. Nie, Y. Jiang, and Y. Zhang. “Fatigue Resistance Improvement on Double-Sided Welded Joints of a Titanium Alloy Treated by Laser Shock Peening”. Journal of Materials Engineering and Performance 31 (2022): 10304–10313.
[25] B. Starman, H. Hallberg, M. Wallin, M. Ristinmaa, N. Mole, and M. Halilovič. “Modelling of the Mechanical Response in 304 Austenitic Steel during Laser Shock Peening and Conventional Shot Peening”. Procedia Manufacturing 47 (2019): 450–457.
[26] J. N. Johnson and R. W. Rohde. “Dynamic Deformation Twinning in Shock‐Loaded Iron”. Journal of Applied Physics 42. no. 11 (2003): 41-71.
[27] J. H. Kim and Y. J. Kim. “Sensitivity analyses of finite element parameters of laser shock peening for improving fatigue life of metalic components”. Transactions of the Korean Society of Mechanical Engineers A 34. no. 12 ( 2010): 1821–1828.
[28] R. Negarestani and L. Li. “Laser machining of fibre-reinforced polymeric composite materials”. Machining Technology for Composite Materials, 1st ed. Woodhead Publishing (2012): 288–308.
[29] M. Shariati, H. Hatami, H. R. Eipakchi, H. Yarahmadi, and H. Torabi. “Experimental and numerical investigations on softening behavior of POM under cyclic strain-controlled loading”. Polymer-Plastics Technology and Engineering 50. no. 15 (2011): 1576–1582.
[30] ASTM International. “Standard Test Method for Measurement of Fatigue Crack Growth Rates”. ASTM E647-00. 2002.
[31] G. R. Johnson. “A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures”. Proc. 7th Inf. Sympo. Ballist. (1983): 541–547.
[32] G. Singh, R. V Grandhi, and D. S. Stargel. “Modeling and Parameter Design of a Laser Shock Peening Process”. International Journal for Computational Methods in Engineering Science and Mechanics 12. no. 5 (2011): 233–253.
[33] V. V Vershinin. “Validation of metal plasticity and fracture models through numerical simulation of high velocity perforation”. International Journal of Solids and Structures 67 (2015): 127–138.
[34] G. Ivetic, “Three-dimensional FEM analysis of laser shock peening of aluminium alloy 2024-T351 thin sheets”. Surface Engineering 27. no. 6 (2011): 445–453.
[35] ASTM International. “Standard Test Method for Plane Stress Fracture Toughness of Metallic Materials”. ASTM E399-97. 2002.
[36] L. M. Tudose and C. O. Popa. “Stress Intensity Factors Analysis on Cracks in the Hertzian Stresses Field of Teeth Gears”. ROTRIB 7. no. 118 (2007): 1–8.
[37] احمدی بروغنی سید یوسف و سید رسول سجادی، “تحلیل اجزای محدود مکانیک شکست چرخ و ریل”، نشریه مدل سازی در مهندسی 9، 26، پاییز (1390): 31-23.
[38] Y. Fu, H. Gao, X. Wang, and D. Guo. “Machining the Integral Impeller and Blisk of Aero-Engines: A Review of Surface Finishing and Strengthening Technologies”. Chinese Journal of Mechanical Engineering 30. no. 3 (2017): 528–543.
[39] M. X. Sun, C. H. Liang, and S. F. Zhang. “Application of laser repairing technology for fan/compressor blisk”. Aeronautical Manufacturing Technology 429. no. 9 (2013): 62–65.
[40] G. Ranjith Kumar and G. Rajyalakshmi. “Modelling and multi objective optimization of laser peening process using Taguchi utility concept”. IOP Conference Series: Materials Science and Engineering 263. no. 6 (2017): 1-15.
[41] ASTM International. “Standard guide for conducting static, tension, compression and cyclic tests on fatigue-resistant ferrous alloys”. ASTM E1290-08. 2018.