Investigating the effect of laser shock process on fracture and fatigue properties of 2024-T351 aluminum alloy using numerical modeling

Document Type : Mechanics article

Authors

1 Msc student, Department of Mechanical Engineering, Quchan University of Technology, Quchan, Iran

2 Assistant Professor, Department of Mechanical Engineering, Quchan University of Technology, Quchan, Iran

3 Graduated Msc, Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Irann

Abstract

One of the most important challenges facing mechanical parts that are exposed to dynamic loads in various industries, such as automotive and aerospace, is their failure due to fatigue. Al-2024 series alloys are widely used due to their high strength-to-weight ratio and high fatigue resistance. Therefore, increasing the fatigue life of structures made of these types of alloys is always one of the most important design issues. In this study, the impact of changes in laser pulse pressure parameters as well as the percentage of overlap of laser effect points in the laser shock process, its effect on the fracture and fatigue behavior of aluminum alloy with the help of numerical modeling methods and also experimental tests were carried out and then evaluated. they got. After examining the results of the fracture tests, it was observed that the fracture toughness of the shocked samples increases by 38%. Also, the fatigue life of the samples treated with this method has been improved by 10-32% in different conditions, and in general, the shock process has been effective in improving the fracture and fatigue behavior of aluminum alloy.

Keywords

Main Subjects


[1] M. Shariati, H. Hatami, H. Yarahmadi, and H. R. Eipakchi. “An experimental study on the ratcheting and fatigue behavior of polyacetal under uniaxial cyclic loading”. Materials & Design 34. (2012): 302–312.
[2] H. Hatami and M. Shariati. “Numerical and Experimental Investigation of SS304L Cylindrical Shell with Cutout Under Uniaxial Cyclic Loading”. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 43. No. 2 (2019): 139–153.
[3] M. Shariati, H. Hatami, H. Torabi, and H. R. Epakchi. “Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading”. Structural Engineering and Mechanics 44. no. 6 (2012): 753–762.
[4] M. Honarpishe and V. Zandian. “Investigation of Residual Stresses in Stress-Relieved Samples by Heat Treatment and Ultrasonic Methods Using Hole-Drilling Method”. Modares Mechanical Engineering 14. no. 15 (2015): 273–278.
[5] آقایی عطار، میلاد، و مجید قریشی. “پیشبینی تنشهای پسماند و کرنشهای الاستیک-پلاستیک در جوشکاری لیزری سوراخ کلیدی دیسک غیر همجنس مس و فولاد زنگ نزن 304".  نشریه مدل سازی در مهندسی 18، 63، (1399): 166-151.
[6] S. O. Saied and A. A. El-Danaf. “Laser shock processing of 2024-T351 aluminum alloy: Microstructure and mechanical property modifications”. Materials & Design 156 (2018): 183–193.
[7] M. Dorman, M. B. Toparli, N. Smyth, A. Cini, M. E. Fitzpatrick, and P. E. Irving. “Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects”. Materials Science and Engineering A 548 (2012): 142–151.
[8] P. K. Sharp, Q. Liu, S. A. Barter, P. Baburamani, and G. Clark. “Fatigue life recovery in aluminium alloy aircraft structure”. Fatigue & Fracture of Engineering Materials & Structures 25. no. 2 (2002): 99–110.
[9] W. Braisted and R. Brockman. “Finite element simulation of laser shock peening”. International Journal of Fatigue 21 (1999): 719–724.
[10] J. Fu, Y. Zhu, C. Zheng, R. Liu, and Z. Ji. “Effect of laser shock peening on mechanical properties of Zr-based bulk metallic glass”. Applied Surface Science 313 (2014): 692–697.
[11] B. Dhakal and S. Swaroop. “Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy”. Journal of Materials Processing Technology 282 (2019): 616-640.
[12] R. M. White. “Elastic wave generation by electron bombardment or electromagnetic wave absorption”.  Journal of Applied Physics 34. no. 7 (1963): 2123–2124.
[13] N. C. Anderholm. “Laser-generated stress waves”. Applied Physics Letters 16. no. 3 (1970): 113–115.
[14] P. Peyre, R. Fabbro, P. Merrien, and H. P. Lieurade. “Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour”. Materials Science and Engineering A 210. no. 1–2 (1996): 102–113.
[15] K. Ding and L. Ye. Physical and mechanical mechanisms of laser shock peening. Woodhead Publishing (2006): 7–46.
[16] C. Rubio-González et al. “Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy”. Materials Science and Engineering A 386. no. 1–2 (2004): 291–295.
[17] K. Y. Luo, J. Z. Lu, Q. W. Wang, M. Luo, H. Qi, and J. Z. Zhou. “Residual stress distribution of Ti-6Al-4V alloy under different ns-LSP processing parameters”. Applied Surface Science, 285 (2013): 607–615.
[18] Q. Liu, C. H. Yang, K. Ding, S. A. Barter, and L. Ye. “The effect of laser power density on the fatigue life of laser-shock-peened 7050 aluminium alloy”. Fatigue & Fracture of Engineering Materials & Structures 30. no. 11 (2007): 1110–1124.
[19] C. Rubio-González, C. Felix-Martinez, G. Gomez-Rosas, J. L. Ocaña, M. Morales, and J. A. Porro, “Effect of laser shock processing on fatigue crack growth of duplex stainless steel”. Materials Science and Engineering A 528. no. 3 (2011): 914–919.
[20] R. Sun et al. “Laser shock peening induced fatigue crack retardation in Ti-17 titanium alloy”. Materials Science and Engineering A 737 (2018): 94–104.
[21] M. Pavan, D. Furfari, B. Ahmad, M. A. Gharghouri, and M. E. Fitzpatrick. “Fatigue crack growth in a laser shock peened residual stress field”. International Journal of Fatigue 123 (2019): 157–167.
[22] W. Li et al., “Effect of laser shock peening on high cycle fatigue properties of aluminized AISI 321 stainless steel”. International Journal of Fatigue 153 (2020): 1-12
[23] J. Kaufman et al. “Effect of Laser Shock Peening Parameters on Residual Stresses and Corrosion Fatigue of AA5083”. Metals 11. no. 10. (2021) 1-10.
[24] X. Hu, J. Zhao, X. Teng, X. Nie, Y. Jiang, and Y. Zhang. “Fatigue Resistance Improvement on Double-Sided Welded Joints of a Titanium Alloy Treated by Laser Shock Peening”. Journal of Materials Engineering and Performance 31 (2022): 10304–10313.
[25] B. Starman, H. Hallberg, M. Wallin, M. Ristinmaa, N. Mole, and M. Halilovič. “Modelling of the Mechanical Response in 304 Austenitic Steel during Laser Shock Peening and Conventional Shot Peening”. Procedia Manufacturing 47 (2019): 450–457.
[26] J. N. Johnson and R. W. Rohde. “Dynamic Deformation Twinning in Shock‐Loaded Iron”. Journal of Applied Physics 42. no. 11 (2003): 41-71.
[27] J. H. Kim and Y. J. Kim. “Sensitivity analyses of finite element parameters of laser shock peening for improving fatigue life of metalic components”. Transactions of the Korean Society of Mechanical Engineers A  34. no. 12 ( 2010): 1821–1828.
[28] R. Negarestani and L. Li. “Laser machining of fibre-reinforced polymeric composite materials”. Machining Technology for Composite Materials, 1st ed. Woodhead Publishing (2012): 288–308.
[29] M. Shariati, H. Hatami, H. R. Eipakchi, H. Yarahmadi, and H. Torabi. “Experimental and numerical investigations on softening behavior of POM under cyclic strain-controlled loading”. Polymer-Plastics Technology and Engineering 50. no. 15 (2011): 1576–1582.
[30] ASTM International. “Standard Test Method for Measurement of Fatigue Crack Growth Rates”. ASTM E647-00. 2002.
[31] G. R. Johnson. “A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures”. Proc. 7th Inf. Sympo. Ballist. (1983): 541–547.
[32] G. Singh, R. V Grandhi, and D. S. Stargel. “Modeling and Parameter Design of a Laser Shock Peening Process”. International Journal for Computational Methods in Engineering Science and Mechanics 12. no. 5 (2011): 233–253.
[33] V. V Vershinin. “Validation of metal plasticity and fracture models through numerical simulation of high velocity perforation”. International Journal of Solids and Structures 67 (2015): 127–138.
[34] G. Ivetic, “Three-dimensional FEM analysis of laser shock peening of aluminium alloy 2024-T351 thin sheets”. Surface Engineering 27. no. 6 (2011): 445–453.
[35] ASTM International. “Standard Test Method for Plane Stress Fracture Toughness of Metallic Materials”. ASTM E399-97. 2002.
[36] L. M. Tudose and C. O. Popa. “Stress Intensity Factors Analysis on Cracks in the Hertzian Stresses Field of Teeth Gears”. ROTRIB 7. no. 118 (2007): 1–8.
[37] احمدی بروغنی سید یوسف و سید رسول سجادی، “تحلیل اجزای محدود مکانیک شکست چرخ و ریل”،  نشریه مدل سازی در مهندسی 9، 26، پاییز (1390): 31-23.
[38] Y. Fu, H. Gao, X. Wang, and D. Guo. “Machining the Integral Impeller and Blisk of Aero-Engines: A Review of Surface Finishing and Strengthening Technologies”. Chinese Journal of Mechanical Engineering 30. no. 3 (2017): 528–543.
[39] M. X. Sun, C. H. Liang, and S. F. Zhang. “Application of laser repairing technology for fan/compressor blisk”. Aeronautical Manufacturing Technology 429. no. 9 (2013): 62–65.
[40] G. Ranjith Kumar and G. Rajyalakshmi. “Modelling and multi objective optimization of laser peening process using Taguchi utility concept”. IOP Conference Series: Materials Science and Engineering 263. no. 6 (2017): 1-15.
[41] ASTM International. “Standard guide for conducting static, tension, compression and cyclic tests on fatigue-resistant ferrous alloys”. ASTM E1290-08. 2018.