Robust Controller Design of Double Fed Induction Generator in the Presence of Uncertainties From the System Model and Measurement

Document Type : Power Article

Authors

1 Department of electrical power engineering, faculty of electrical engineering, urmia university

2 Department of electrical power engineering faculty of electrical engineering urmia university

Abstract

In this paper, a robust control method for a double fed induction generator(DFIG) is proposed in which noise measurement is also considered. DFIG controllers are divided into two groups of the rotor side converter and the grid side converter controllers. The main purpose of an RSC controller is to control active and reactive power of the stator. The parameters of the double fed induction generator may deviate from the nominal values due to the operating conditions. For this parametric uncertainty, a robust H∞ vector control is employed using the complex sensitivity approach. The design of the rotor side controller is done using a vector control strategy and instead of PI controllers, a designed robust controller is used. One of the steps of vector control is to measure the rotor currents and use them in control equations. If the measured currents contain noise, the system control is disrupted. Therefore, to solve this problem, it is suggested to use Kalman filter. The effectiveness of the proposed method has been investigated using simulations under different conditions and compared with classical vector control and direct power control. The simulation results show the efficient performance and robustness of the proposed controller with model and measurement uncertainties.

Keywords

Main Subjects


[1] Pena, Ruben, J. C. Clare, and G. M. Asher. "Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation." IEE Proceedings-Electric power applications 143, no. 3 (1996): 231-241.
[2] Hu, Jia-bing, and Yi-kang He. "Dynamic modelling and robust current control of wind-turbine driven DFIG during external AC voltage dip." Journal of Zhejiang University-Science A 7, no. 10 (2006): 1757-1764.
[3] Hu, Jiabing, Yikang He, Lie Xu, and Barry W. Williams. "Improved control of DFIG systems during network unbalance using PI–R current regulators." IEEE transactions on industrial electronics 56, no. 2 (2008): 439-451.
[4] Xu, Lie, and Phillip Cartwright. "Direct active and reactive power control of DFIG for wind energy generation." IEEE Transactions on energy conversion 21, no. 3 (2006): 750-758.
[5] Xin-fang, Zhang, Xu Da-ping, and Liu Yi-bing. "Predictive functional control of a doubly fed induction generator for variable speed wind turbines." In Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No. 04EX788), vol. 4, pp. 3315-3319. IEEE, 2004.
[6] Morren, Johan, and Sjoerd WH De Haan. "Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip." IEEE Transactions on energy conversion 20, no. 2 (2005): 435-441.
[7] Guo, Jiahu, Xu Cai, and Youming Gong. "Decoupled control of active and reactive power for a grid-connected doubly-fed induction generator." In 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp. 2620-2625. IEEE, 2008.
[8] Yao, Xingjia, Yanjun Jing, and Zuoxia Xing. "Direct torque control of a doubly-fed wind generator based on grey-fuzzy logic." In 2007 International Conference on Mechatronics and Automation, pp. 3587-3592. IEEE, 2007.
[9] Hu, Jiefeng, Yong Li, and Jianguo Zhu. "Multi‐objective model predictive control of doubly‐fed induction generators for wind energy conversion." IET Generation, Transmission & Distribution 13, no. 1 (2019): 21-29.
[10] اسماعیلی، مسعود، مصطفی صدیقی زاده، و حسام یارمحمدی. "کنترل یکپارچه ژنراتور القایی، محدودکننده جریان خطا و ذخیره‌ساز انرژی در مزارع بادی". مدل سازی در مهندسی 16، 55 (1397): 87-100.‎
 [11] Zhi, Dawei, and Lie Xu. "Direct power control of DFIG with constant switching frequency and improved transient performance." IEEE transactions on energy conversion 22, no. 1 (2007): 110-118.
[12] Abad, Gonzalo, Miguel Angel Rodriguez, and Javier Poza. "Two-level VSC-based predictive direct power control of the doubly fed induction machine with reduced power ripple at low constant switching frequency." IEEE Transactions on Energy Conversion 23, no. 2 (2008): 570-580.
[13] Abad, Gonzalo, Miguel Angel Rodriguez, and Javier Poza. "Two-level VSC based predictive direct torque control of the doubly fed induction machine with reduced torque and flux ripples at low constant switching frequency." IEEE transactions on power electronics 23, no. 3 (2008): 1050-1061.
[14] Trivedi, Dishang D., Urmil B. Bhatt, and Santosh C. Vora. "Application of EKF based dynamic state estimation for DFIG rotor power control uunder faulty current." International Journal of Advanced Research in Engineering & Technology 8, no. 4 (2017): 95-110.
[15] Pahlavani, Mohamad Reza Alizadeh, and Hassan Meyar Naimi. "Application of Kalman Filter to Parameter Estimation of Doubly-Fed Induction Generators in Wind Turbine Systems." Majlesi Journal of Energy Management 5, no. 2 (2016).
[16] Boussoufa, Ahmad, Madjid Kidouche, and Aimad Ahriche. "Rotor speed and flux estimation of a doubly-fed induction machine using extended kalman filter." Algerian Journal of Signals and Systems 2, no. 4 (2017): 266-273.
[17] Yu, Shenglong, Kianoush Emami, Tyrone Fernando, Herbert HC Iu, and Kit Po Wong. "State estimation of doubly fed induction generator wind turbine in complex power systems." IEEE Transactions on Power Systems 31, no. 6 (2016): 4935-4944.
[18] Pérez, I. Ricardo, J. César Silva, E. Juan Yuz, and R. Gonzalo Carrasco. "Experimental sensorless vector control performance of a DFIG based on an extended Kalman filter." In IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, pp. 1786-1792. IEEE, 2012.
[19] Saravanakumar, R., M. Manimozhi, D. P. Kothari, and M. Tejenosh. "Simulation of sensor fault diagnosis for wind turbine generators DFIG and PMSM using Kalman filter." Energy procedia 54 (2014): 494-505.
[20] Nayeh, Reza Faraji, Hamed Moradi, and Gholamreza Vossoughi. "Multivariable robust control of a horizontal wind turbine under various operating modes and uncertainties: A comparison on sliding mode and H∞ control." International Journal of Electrical Power & Energy Systems 115 (2020): 105474.
 [21] Isbeih, Younes J., Mohamed Shawky El Moursi, Weidong Xiao, and Ehab El‐Saadany. "mixed‐sensitivity robust control design for damping low‐frequency oscillations with DFIG wind power generation." IET Generation, Transmission & Distribution 13, no. 19 (2019): 4274-4286.
[22] فلقی، حمید، مریم رمضانی، و محمودرضا حقی فام. "تحلیل تاثیر نیروگاه های بادی بر قابلیت تبادل شبکه های انتقال در سیستم قدرت". مدل سازی در مهندسی 10، 30، (1391): 61-75.
[23] آقائی، جمشید، امین رحیمی رضایی، و محمدرضا کریمی. "هماهنگی نیروگاه‌های بادی و دستگاه‌های ذخیره‌ساز سیستم قدرت در مسئله‌ی برنامه‌ریزی امنیت-مقید مشارکت واحدها با استفاده از بهینه‌سازی استوار". مدل سازی در مهندسی 16، 53 (1397): 207-220.
[24] Kasbi, Abdellatif, and Abderrafii Rahali. "Adaptive FOPI controller based on the fuzzy supervisory for wind power conversion system equipped by a doubly fed induction generator." International Transactions on Electrical Energy Systems 31, no. 8 (2021): e12923.
[25] Tamalouzt, Salah, Youcef Belkhier, Younes Sahri, Mohit Bajaj, Nasim Ullah, Md Shahariar Chowdhury, Teerawet Titseesang, and Kuaanan Techato. "Enhanced direct reactive power control-based multi-level inverter for DFIG wind system under variable speeds." Sustainability 13, no. 16 (2021): 9060.
[26] Tamalouzt, Salah, Youcef Belkhier, Younes Sahri, Nasim Ullah, Rabindra Nath Shaw, and Mohit Bajaj. "New direct reactive power control based fuzzy and modulated hysteresis method for micro-grid applications under real wind speed." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44, no. 2 (2022): 4862-4887.
[27] Krause, Paul C., Oleg Wasynczuk, Scott D. Sudhoff, and Steven Pekarek. Analysis of electric machinery and drive systems. john Wiley & sons, (2013).
[28] Zhou, Kemin, and John Comstock Doyle. Essentials of robust control. Vol. 104. Upper Saddle River, NJ: Prentice hall, 1998.
[29] Skogestad, Sigurd, and Ian Postlethwaite. Multivariable feedback control: analysis and design. john Wiley & sons, (2001).
[30] Gahinet, P., A. Nemirovskii, A. J. Laub, and M. Chilali. "LMI Control Toolbox for Use with Matlab, The Math." Works Inc., Natick, (2000).
[31] Welch, Greg, and Gary Bishop. "An introduction to the Kalman filter." (2004).
[32] Sorenson, Harold Wayne. "Kalman filtering: theory and application." (1985).
[33] Wan, Eric A., and Alex T. Nelson. "Removal of noise from speech using the dual EKF algorithm." In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP'98 (Cat. No. 98CH36181), vol. 1, pp. 381-384. IEEE, 1998.
[34] Xu, Lie, and Phillip Cartwright. "Direct active and reactive power control of DFIG for wind energy generation." IEEE Transactions on energy conversion 21, no. 3 (2006): 750-758.