[1] M. Griebel, J. Hamaekers, “Molecular dynamics simulations of boron-nitride nanotubes embedded in amorphous Si-BN”, Computational materials science, Vol. 39, No. 3, 2007, pp. 502-517.
[2] W.H. Moon, H.J. Hwang, ”Molecular-dynamics simulation of structure and thermal behaviour of boron nitride
nanotubes”, Nanotechnology, Vol. 15, No. 5, 2004, pp. 431-439.
[3] C. Li, T.W. Chou, “Static and dynamic properties of single-walled boron nitride nanotubes”, Journal of
nanoscience and nanotechnology, Vol. 6, No. 1, 2006, pp. 54-60.
[4] D. Vahedi Fakhrabad, N. Shahtahmassebi, “First-principles calculations of the Young's modulus of double wallboron-nitride nanotubes”, Materials Chemistry and Physics, Vol. 138, No. 2, 2013, pp. 963-966.
[5] L. Jiang, W. Guo, “A molecular mechanics study on size-dependent elastic properties of single-walled boron
nitride nanotubes”, Journal of the Mechanics and Physics of Solids, Vol. 59, No. 6, 2011, pp. 1204-1213.
[6] X. Wei, M.S. Wang, Y. Bando and D. Golberg, “Tensile tests on individual multi‐walled boron nitride nanotubes”, Advanced Materials, Vol. 22, No. 43, 2010, pp. 4895-48999.
[7] M. Griebel, J. Hamaekers and F. Heber, “ A molecular dynamics study on the impact of defects and functionalization on the Young modulus of boron–nitride nanotubes”, Computational Materials Science, Vol. 45, No. 4, 2009, pp. 1097-1103.
[8] H. Wang, N. Ding, X. Zhao and C. Wu, “Defective boron nitride nanotubes: mechanical properties, electronic
structures and failure behaviors”, Journal of Physics D: Applied Physics, Vol. 51, No.12, 2018, pp. 125-133.
[9] A.E. Tanur, J. Wang, A.L Reddy, D.N Lamont, Y.K. Yap and G.C Walker, “Diameter-dependent bending modulus of individual multiwall boron nitride nanotubes”, The Journal of Physical Chemistry B, Vol. 117, No. 1, 2013, pp. 4618-4625.
[10] N.G. Chopra, A. Zettl, “Measurement of the elastic modulus of a multi-wall boron nitride nanotube”, Solid State Communications, Vol. 105, No. 5, 1998, pp. 297-300.
[11] H.M Ghassemi, C.H. Lee, Y.K. Yap and R.S Yassar, “In situ TEM monitoring of thermal decomposition in individual boron nitride nanotubes”, JOM, Vol. 62, No. 1, 2010, pp. 69-73.
[12] V.K Choyal, V. Choyal, S. Nevhal, A. Bergaley and S. Kundalwal, “Effect of aspects ratio on Young’s modulus of boron nitride nanotubes: A molecular dynamics study”, Materials Today: Proceedings, Vol. 26, No. 1, 2020, pp. 1-4.
[13] A.P. Suryavanshi, M.F. Yu, J. Wen, C. Tang, Y. Bando, “Elastic modulus and resonance behavior of boron nitride nanotubes”, Applied Physics Letters Vol. 84, NO.1, 2004, pp. 2527-2529.
[14] L. Boldrin, F. Scarpa, R. Chowdhury and S. Adhikari, “Effective mechanical properties of hexagonal boron nitride nanosheets”, Nanotechnology, Vol. 22, No. 50, 2011, pp. 505-512.
[15] V. Verma, V.K. Jindal and K. Dharamvir, “Elastic moduli of a boron nitride nanotube”, Nanotechnology,
Vol. 18, No. 1, 2007, pp. 435-442.
[16] T. Natsuki, J. Natsuki, “Prediction of mechanical properties for hexagonal boron nitride nanosheets using
molecular mechanics model”, Applied Physics A, Vol. 123, No. 4, 2017, pp. 1-6.
[17] A. Fereidoon, M. Mostafaei, M.D. Ganji and F. Memarian, “Atomistic simulations on the influence of diameter,number of walls, interlayer distance and temperature on the mechanical properties of BNNTs”, Superlattices and Microstructures, Vol. 86, No. 1, 2015, pp. 126-133.
[18] E. Hernandez, C. Goze, P. Bernier, A. Rubio, “Elastic properties of single-wall nanotubes”, Applied Physics A, Vol. 68, No.3, 1999, pp. 287-292.
[19] M. Santosh, P.K. Maiti and A. Sood, “Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes”, Journal of nanoscience and nanotechnology, Vol. 9, No. 9, 2009, pp. 5425-5430.
[20] H. Mousavi, R. Moradian, “Metallic and semimetallic properties of doped graphene and boron
nitride planes”, Solid State Communications, Vol. 153, No. 1, 2013, pp. 17-22.
[21] M. Mir, M. Tahani and B. Hassani, “Analytical prediction of Young's modulus of carbon nanotubes using a
variational method”, Applied Mathematical Modelling, Vol. 45, No. 1, 2017, pp. 1031-1043.